Nanoscale Issue 9 of 2013 out now!

The latest issue of Nanoscale is now online. You can read the full issue here:

The outside front cover features a Paper on Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro by Vera Hirsch, Calum Kinnear, Marc Moniatte, Barbara Rothen-Rutishauser, Martin J. D. Clift and Alke Fink.

Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy is the Paper highlighted on the inside front cover by Juan José Valle-Delgado, Patricia Urbán and Xavier Fernàndez-Busquets.

 

Issue 9 contains the following Review, Mini-review and Feature articles:

Nano–bio effects: interaction of nanomaterials with cells
Liang-Chien Cheng, Xiumei Jiang, Jing Wang, Chunying Chen and Ru-Shi Liu

Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy
Muhammad Iqbal Bakti Utama, Qing Zhang, Jun Zhang, Yanwen Yuan, Francisco J. Belarre, Jordi Arbiol and Qihua Xiong

Recent progress in nanosensors for sensitive detection of biomolecules
Jiasi Wang and Xiaogang Qu

Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications
Xiaoyang Pan, Min-Quan Yang, Xianzhi Fu, Nan Zhang and Yi-Jun Xu

Fancy submitting an article to Nanoscale? Then why not submit to us today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 most-read Nanoscale articles in February

This month sees the following articles in Nanoscale that are in the top ten most accessed for February:

Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review 
Mingjia Zhi ,  Chengcheng Xiang ,  Jiangtian Li ,  Ming Li and Nianqiang Wu 
Nanoscale, 2013,5, 72-88 
DOI: 10.1039/C2NR32040A 

Graphene transfer: key for applications 
Junmo Kang ,  Dolly Shin ,  Sukang Bae and Byung Hee Hong  
Nanoscale, 2012,4, 5527-5537 
DOI: 10.1039/C2NR31317K 

Graphene synthesis: relationship to applications 
Rebecca S. Edwards and Karl S. Coleman  
Nanoscale, 2013,5, 38-51 
DOI: 10.1039/C2NR32629A 

Graphene edges: a review of their fabrication and characterization 
Xiaoting Jia ,  Jessica Campos-Delgado ,  Mauricio Terrones ,  Vincent Meunier and Mildred S. Dresselhaus
Nanoscale, 2011,3, 86-95 
DOI: 10.1039/C0NR00600A 

A review of fabrication and applications of carbon nanotube film-based flexible electronics
Steve Park ,  Michael Vosguerichian and Zhenan Bao 
Nanoscale, 2013,5, 1727-1752 
DOI: 10.1039/C3NR33560G 

Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene
Yi Lin and John W. Connell  
Nanoscale, 2012,4, 6908-6939 
DOI: 10.1039/C2NR32201C 

Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy 
Liang Cheng ,  Chao Wang and Zhuang Liu 
Nanoscale, 2013,5, 23-37 
DOI: 10.1039/C2NR32311G 

A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties 
Jingfa Li ,  Shenglin Xiong ,  Xiaowei Li and Yitai Qian 
Nanoscale, 2013,5, 2045-2054 
DOI: 10.1039/C2NR33576J 

Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials 
Tapas Kuila ,  Ananta Kumar Mishra ,  Partha Khanra ,  Nam Hoon Kim and Joong Hee Lee  
Nanoscale, 2013,5, 52-71 
DOI: 10.1039/C2NR32703A 

Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction 
Chengzhou Zhu and Shaojun Dong  
Nanoscale, 2013,5, 1753-1767 
DOI: 10.1039/C2NR33839D 

Why not take a look at the articles today and blog your thoughts and comments below.

Fancy submitting an article to Nanoscale? Then why not submit to us today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Origami electronics for foldable devices

Lee Barrett is a guest web-writer for Nanoscale. He is currently a post-doctoral researcher at the University of Strathclyde, UK.

Researchers from Osaka University, Japan, have developed foldable nanopaper antennas by fabricating a cellulose nanofiber substrate and imprinting silver nanowires on the surface.

The authors compiled nanopaper sheets from nanofibrillated pulp fibers, without conventional high pressure processing, to produce sheets with diameters ranging from 15 to 60 nm and a high smoothness of 0.16 μm.  The nanopaper surfaces were found to be 15-80 times smoother than pulp papers – a quality required for effective electrical properties in devices.  The silver nanowires were synthesized by reducing silver nitrate in the presence of PVP in ethylene glycol.  This produced silver nanowires 100 nm in diameter with lengths of between 5-10 μm.  The nanowires were mixed with ethylene glycol to produce pastes, which were subsequently mask-printed onto the nanopaper substrate.

To test the durability of the nanopaper-silver nanowire devices, the authors folded the paper into origami cranes, which was used to power an LED light.  This demonstrated that, even with multiple folding, the nanopaper devices retain their electrical properties more consistently than folded pulp papers.  This research has demonstrated, for the first time, that durable folded nanopaper devices with printed silver nanowire antennas can be easily and reproducibly fabricated.  The authors envisage these antennas could herald a new wave of foldable electronic devices, such as those used in smart phones and laptop computers.

by Dr Lee Barrett

Read this HOT Nanoscale article in full:

Foldable nanopaper antennas for origami electronics
Masaya Nogi, Natsuki Komoda, Kanji Otsuka and Katsuaki Suganuma
DOI: 10.1039/C3NR00231D

Table of contents image

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Formamide used to directly synthesis hydrophilic nanocrystals

Scientists from Tsinghua University in China have found a way to synthesis water soluble nanocrystals with sizes smaller than 10nm using a formamide solvent-system.

So far, many groups have been successful in synthesising hydrophobic nanocrystals, but their inability to disperse in water has hindered their applications in electronics, catalysis and biomedicine. Hydrophobic nanocrystals can be made hydrophilic by using ligands to modify the surface, although these post-synthesis treatments are usually time-consuming and not environmentally friendly.  Wang and co-workers have solved these problems with their direct synthesis of water-soluble nanocrystals, which does not use toxic solvents and has no need for post-modifications.

Read this HOT article today:

Formamide: an efficient solvent to synthesize water-soluble, sub-10-nanometer nanocrystals
Xun Wang, Biao Xu and Zhi Cheng Zhang
DOI: 10.1039/C3NR00643C

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale article in Chemistry World: Biomimetic bricks inspired by mother of pearl

© Shutterstock

Chinese chemists have developed a new nacre-like material which is stronger than natural nacre and most other composites.

Nacre, which is also known as mother of pearl, is a naturally occurring composite formed from calcium carbonate and biopolymers that create a brickwork structure. It is also nearly a thousand times stronger than any of its component parts and a major target for biomimetic synthesis.

Design of the brickwork structure is central to developing nacre-like materials with enhanced properties. Gaoquan Shi, and colleagues, at Tsinghua University, Beijing, began by making a hydrogel from graphene and a silk protein, called fibroin.

Read the article in Nanoscale:

Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels
Liang Huang ,  Chun Li ,  Wenjing Yuan and Gaoquan Shi
DOI: 10.1039/C3NR00196B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Parallelogram shaped nanowires control light in two dimensions

Table of contents imageA novel zinc oxide microwire optical resonator with parallelogram-shaped cross section has been made by chemists based in China and Taiwan. The material can effectively control light in two dimensions, and could play the part of a building block in the development of optoelectronic devices.

Read this HOT Nanoscale communication today:

Optical modulation of ZnO microwire optical resonators with a parallelogram cross-section
Yang Liu, Hongxing Dong, Shulin Sun, Wenhui Liu, Jinxin Zhan, Zhanghai Chen, Jun Wang and Long Zhang
DOI: 10.1039/C3NR00700F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Nanoscale Associate Editor: Prof. Dirk Guldi

Dirk Guldi Nanoscale Associate Editor

We are delighted to welcome Professor Dirk Guldi as a new Associate Editor for Nanoscale. Professor Guldi is one of the world-leading scientists in the field of charge transfer/nanocarbons. In particular, he is well-known for his contributions to the areas of charge-separation in donor-acceptor materials and construction of nanostructured thin films for solar energy conversion.Nanoscale

His research at the Friedrich Alexander University of Erlangen-Nuremberg involves the application of an arsenal of spectroscopic and microscopic techniques to a variety of molecular systems designed specifically to explore the nature of the chemical, physical and photophysical properties of new molecular hybrids, quantum dots, quantum rods and nanoparticles. He is also interested in designing and synthesising novel nanometer scale structures in combination with electron donors as integrative components for electron-donor-acceptor ensembles.

Prof. Guldi is handling papers and so we encourage you to submit to his editorial office.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Get Funded To Visit Chinese Universities

If you wish to create new research collaborations with Chinese Universities, you can now apply for the RSC-SAFEA visiting researcher programme.

Call for applications are open until the 20th May 2013.

Please email: international@rsc.org to register your interest in participating in the programme. Read more from previous researchers who have participated in this programme in 2010-2012 http://my.rsc.org/blogs/74.

RSC Visiting Researcher Programme ChinaThe State Administration for Foreign Experts Affairs (SAFEA) is a division of the Chinese Government with which RSC has a cooperation agreement. Under this agreement the RSC and SAFEA will jointly fund researchers from the UK to visit Chinese Universities. The purpose of the visits is to stimulate collaboration between UK and Chinese institutions. They will allow the visitor to contribute their experience towards the development of excellent emerging science and build links with the Chinese Chemistry community.

In addition, the visitor will advise Chinese research groups on all aspects of presenting their research to an international audience. The programme will strengthen links between the UK and Chinese Science and between the RSC and our partners in China.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale article in Chemistry World: Nanopaper light scattering under control

Transparent nanopaper with tailored optical propertiesCollaborators in the US and China have demonstrated that by changing the diameter of cellulose fibres in nanopaper they can tailor its optical properties for use in optoelectronics.

In this work, Zhichao Ruan from Zhejiang University and Liangbing Hu from the University of Maryland have looked at the effect of changing the fibre diameter and packing density in transparent nanopaper. ‘Specular transmittance measures light in the normal direction, whereas diffusive transmittance refers to the forward direction’ explains Hu. ‘As the fibre diameter decreases, the overall transmittance, including both specular and diffusive transmittance, increases. But the difference between the two, which is related to the haze of the nanopaper, starts to decrease.’

Read the full article in Chemistry World!

Read the article in Nanoscale:

Transparent nanopaper with tailored optical properties
Hongli Zhu, Sepideh Parvinian, Colin Preston, Oeyvind Vaaland, Zhichao Ruan and Liangbing Hu
DOI: 10.1039/C3NR00520H

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Strong composite films from silk fibroin and graphene oxide

Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels

Gaoquan Shi and co-workers have made composite films comprising graphene oxide sheets and silk fibroin in a layered structure, which mimic natural nacre. They demonstrate a facile solution-casting method for incorporating the fibroin into graphene oxide.

The impressive mechanical properties of their material, surpassing those of natural nacre in some ways, make it potentially useful as a high-strength structural material. The biocompatibility of the material components also makes the composite promising for biological applications, such as tissue engineering.

Read this HOT article today:

Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels
Liang Huang, Chun Li, Wenjing Yuan and Gaoquan Shi
DOI: 10.1039/C3NR00196B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)