Author Archive

Photoinduced Charge Transfer in a Bi2O2Se/CsPbBr3 Heterostructure

Photoinduced Charge Transfer in a Bi2O2Se/CsPbBr3 Heterostructure

An infographic highlighting photodetectors exploiting interfacial charge transfer in nanocrystal heterostructures

We would like to share an infographic highlighting the excellent work by P. K. Giri et al. on understanding the efficient charge transfer in few-layer Bi2O2Se/CsPbBr3 nanocrystal heterostructures! Check out the infographic below to learn more or get the full story from their Nanoscale article.

Understanding the interfacial charge transfer in the CVD grown Bi2O2Se/CsPbBr3 nanocrystal heterostructure and its exploitation in superior photodetection: experiment vs. theory
Md Tarik Hossain, Mandira Das, Joydip Ghosh, Subhradip Ghosh and P. K. Giri
Nanoscale, 2021, DOI: 10.1039/D1NR04470B

An infographic summarising the content of the article “Understanding the interfacial charge transfer in the CVD grown Bi2O2Se/CsPbBr3 nanocrystal heterostructure and its exploitation in superior photodetection: experiment vs. theory"

Meet the authors

Md Tarik Hossain Md Tarik Hossain

Md Tarik Hossain is presently a PhD research scholar at the department of Physics, Indian Institute of Technology Guwahati, Assam. He obtained his Master degree in Physics from University of Hyderabad and joined the PhD programme at Indian Institute of Technology Guwahati in 2018. His research interests are CVD growth and multifunctional applications of non-van der Walls 2D materials, including photophysics and optoelectronics.

Professor Pravat Giri Pravat K. Giri

Prof. P. K. Giri earned his PhD in Physics from Indian Institute of Technology (IIT) Kanpur in 1998 followed by postdoctoral research in CNR IMM, Italy. In 1999, he joined IGCAR, Kalpakkam as a Scientist and later (2001) he moved to IIT Guwahati as a Faculty member in Physics. Presently he is a full Professor of Physics and Nanotechnology at IIT Guwahati. For his outstanding research contributions, he received several awards/ fellowships including ICTP TRIL fellowship (1998), DAE Young Scientist Award (2000), DAAD Exchange visit Fellowship (2010), JSPS Invitation Fellowship for log-term research in Japan (2012), Visiting research fellowship, University of Birmingham, UK (2018), MRSI medal (2020). He is a fellow of Institute of Physics, UK. He has published more 160 journal articles including 8 review articles in high profile international journals and holds one patent to his credit. Currently, his H-index is 41. He is one among the world’s top 2% scientists in Applied Physics and Nanoscience area (database published by Stanford University, USA). His research areas of interests are semiconductor nanostructures, 2D materials, nanobiosensors, optoelectronics, nanophotonics etc.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Most Popular 2021 Nanoscale Articles

Most popular articles in 2021

 

We wanted to share with you some of the most popular articles published in Nanoscale last year, determined by their citations and page views.

Read the most popular Nanoscale articles here

All of the articles in the collection are free to access until the end of March 2022. Read some of the featured articles below.

Revisiting anodic alumina templates: from fabrication to applications
Alejandra Ruiz-Clavijo, Olga Caballero-Calero and Marisol Martín-González
Nanoscale, 2021, DOI: 10.1039/D0NR07582E

2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications
Yanpeng Xue, Gongchi Zhao, Ruiying Yang, Feng Chu, Juan Chen, Lei Wang and Xiubing Huang
Nanoscale, 2021, DOI: 10.1039/D0NR09064F

Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages
Martin T. Matter, Meagan Doppegieter, Alexander Gogos, Kerda Keevend, Qun Ren and Inge K. Herrmann
Nanoscale, 2021, DOI: 10.1039/D0NR08285F

Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces
Boyuan Jin, Dhananjay Mishra and Christos Argyropoulos
Nanoscale, 2021, DOI: 10.1039/D1NR05379E

Group-IV(A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity
Pradip Nandi, Ashima Rawat, Raihan Ahammed, Nityasagar Jena and Abir De Sarkar
Nanoscale, 2021, DOI: 10.1039/D0NR07027K

 

We hope you enjoy reading these popular articles.

With best wishes,

Dr Heather Montgomery
Managing Editor, Nanoscale

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Generation of Chiroptically Active CsPbBr3 Nanoparticles

Generation of Chiroptically Active CsPbBr3 Nanoparticles

An infographic highlighting the post-synthetic ligand modification of perovskites to generate chiral nanoparticles

We would like to share an infographic highlighting the excellent work by David H. Waldeck et al. on a facile post-synthetic ligand modification strategy for making CsPbBr3 nanoparticles from achiral counterparts at room temperature! Check out the infographic below to learn more or get the full story from their Nanoscale article.

Using post-synthetic ligand modification to imprint chirality onto the electronic states of cesium lead bromide (CsPbBr3) perovskite nanoparticles
Gouranga H. Debnath, Zheni N. Georgieva, Brian P. Bloom, Susheng Tan and David H. Waldeck
Nanoscale, 2021, DOI: 10.1039/D1NR04274B

An infographic summarising the content of the article “Using post-synthetic ligand modification to imprint chirality onto the electronic states of cesium lead bromide (CsPbBr3) perovskite nanoparticles"

Meet the authors

Dr Gouranga Debnat Gouranga H. Debnat

Gouranga H. Debnath received his Ph.D. in Nanoscience and Nanotechnology from the Centre for Research in Nanoscience and Nanotechnology (CRNN) University of Calcutta in 2020, where he worked on the synthesis and spectroscopic characterization of lanthanide doped semiconductor nanomaterials. He is currently a postdoctoral associate in Prof. David H. Waldeck’s group at the Department of Chemistry University of Pittsburgh, where he studies perovskite nanomaterials and the chiral induced spin selectivity (CISS) effect.

Professor David Waldeck David H. Waldeck

David H. Waldeck obtained a Ph.D. in chemistry from the University of Chicago in 1983 and was an IBM Postdoctoral Fellow at the University of California, Berkeley from 1983 to 1985. In 1985 he began his independent career as an Assistant Professor of Chemistry at the University of Pittsburgh, where he now serves as Professor of Chemistry and Director of the Petersen Institute of NanoScience and Engineering. David’s research program uses methods of spectroscopy, electrochemistry, and microscopy to investigate primary processes in the condensed phase and in nanoscale assemblies. His research program uses experiment and theory in a synergistic manner to quantify the interesting phenomenology that is displayed by molecules and their assemblies. Currently they are working to elucidate the nature of long-range electron transfer and the chiral induced spin selectivity effect.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Highly Active Carbon-Black-Supported Platinum Nanocluster Catalysts

New Highly Active Carbon-Black-Supported Platinum Nanocluster Catalysts

An infographic highlighting a simple size-selective method for the synthesis of Pt nanocluster catalysts

We would like to share an infographic highlighting the excellent work by Yuichi Negishi et al. on a simple method for the size-selective synthesis of a series of ligand-protected platinum nanoclusters with superior oxygen reduction reactivity! Check out the infographic below to learn more or get the full story from their Nanoscale article.

Simple and high-yield preparation of carbon-black-supported ∼1 nm platinum nanoclusters and their oxygen reduction reactivity
Tokuhisa Kawawaki, Nobuyuki Shimizu, Kanako Funai, Yusuke Mitomi, Sakiat Hossain, Soichi Kikkawa, D. J. Osborn, Seiji Yamazoe, Gregory F. Metha and Yuichi Negishi
Nanoscale, 2021, DOI: 10.1039/D1NR04202E

An infographic summarising the content of the article “Simple and high-yield preparation of carbon-black-supported ∼1 nm platinum nanoclusters and their oxygen reduction reactivity"

Meet the authors

Professor Yuichi Negishi Yuichi Negishi

Yuichi Negishi is a Professor in the Department of Applied Chemistry at Tokyo University of Science. He received his Ph.D. degree in Chemistry in 2001 under the supervision of Prof. Atsushi Nakajima at Keio University. Before joining Tokyo University of Science in 2008, he was employed as an assistant professor at Keio University (with Associate Prof. Atsushi Nakajima) and at the Institute for Molecular Science (with Associate Prof. Tatsuya Tsukuda). As senior researcher, he has more than 190 publications to his credit (total citations are over 12,000 times) and is the head of his research laboratory at the university. His areas of research include physical chemistry, cluster chemistry, and nanomaterial chemistry. His notable achievements include The Chemical Society of Japan Award for Young Chemists (Japan Chemical Society, 2008), the Japan Society for Molecular Science Award for Young Scientists (Japan Society for Molecular Science, 2012), Yagami Prize (Keio University, 2017), Distinguished Award 2018 for Novel Materials and Their Synthesis (IUPAC etc., 2018) and International Investigator Awards of the Japan Society for Molecular Science (Japan Society for Molecular Science, 2020).

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Professor Zhiqun Lin joins the Associate Editor team

Professor Zhiqun Lin joins the Associate Editor team

Welcome to Nanoscale and Nanoscale Advances!

 

Professor Zhiqun Lin

We are delighted to welcome Professor Zhiqun Lin, Georgia Institute of Technology, USA, as a new Associate Editor working across Nanoscale and Nanoscale Advances.

Zhiqun Lin received his Ph.D in Polymer Science and Engineering from the University of Massachusetts, Amherst in 2002. He is currently a Professor in the School of Materials Science and Engineering at the Georgia Institute of Technology.

His research interests include solar cells, photocatalysis, electrocatalysis, batteries, quantum dots (rods), multifunctional nanocrystals, Janus nanostructures, conjugated polymers, semiconductor organic-inorganic nanocomposites, block copolymers, polymer blends, hierarchical structure formation and assembly, and surface and interfacial properties.

 

Submit your latest research to Professor Lin’s Editorial Office

 

Read some of his recent papers below.

Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes
Baoying Dai, Gill M. Biesold, Meng Zhang, Haiyang Zou, Yong Ding, Zhong Lin Wang and Zhiqun Lin
Chem. Soc. Rev., 2021, DOI: 10.1039/D1CS00506E

Tailoring oxygen evolution reaction activity of metal-oxide spinel nanoparticles via judiciously regulating surface-capping polymers
Christopher D. Sewell, Zewei Wang, Yeu-Wei Harn, Shuang Liang, Likun Gao, Xun Cui and Zhiqun Lin
J. Mater. Chem. A, 2021, DOI: 10.1039/D1TA04511C

Continuous production of ultrathin organic–inorganic Ruddlesden–Popper perovskite nanoplatelets via a flow reactor
Gill M. Biesold, Shuang Liang, Brent K. Wagner, Zhitao Kang and Zhiqun Lin
Nanoscale, 2021, DOI: 10.1039/D1NR03239A

Stimuli-responsive Janus mesoporous nanosheets towards robust interfacial emulsification and catalysis
Jiangyan Yang, Jialin Wang, Yijiang Liu, Huaming Li and Zhiqun Lin
Mater. Horiz. 2020, DOI: 10.1039/D0MH01260B

Tailoring carrier dynamics in perovskite solar cells via precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles
Xun Cui, Yihuang Chen, Meng Zhang, Yeu Wei Harn, Jiabin Qi, Likun Gao, Zhong Lin Wang, Jinsong Huang, Yingkui Yang and Zhiqun Lin
Energy Environ. Sci., 2020, DOI: 10.1039/C9EE03937F

An integrated experimental and theoretical study on the optical properties of uniform hairy noble metal nanoparticles
Di Yang, Yihuang Chen, Hongshang Peng, Gengxiang Chen and Zhiqun Lin
Nanoscale, 2018, DOI: 10.1039/C8NR07115B

 

Please join us in welcoming Professor Lin to Nanoscale and Nanoscale Advances!

Best wishes,

Dr Heather Montgomery Dr Jeremy Allen
Managing Editor, Nanoscale Executive Editor, Nanoscale Advances
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanomedicine Unlocks Novel Cancer Vaccine with a Dual Immunogenic Effect

Nanomedicine Unlocks Novel Cancer Vaccine with a Dual Immunogenic Effect

An infographic highlighting nanoprodrug-based in situ cancer vaccines

We would like to share an infographic highlighting the excellent work by Ping’an Ma, Jun Lin et al. on a strategy to develop in situ cancer vaccines via dual immunogenic cell death induced by amorphous iron oxide-packaged oxaliplatin nanoprodrugs! Check out the infographic below to learn more or get the full story from their Nanoscale article.

Tumor microenvironment-triggered in situ cancer vaccines inducing dual immunogenic cell death for elevated antitumor and antimetastatic therapy
Binbin Ding, Pan Zheng, Dong Li, Meifang Wang, Fan Jiang, Zhanfeng Wang, Ping’an Ma and Jun Lin
Nanoscale, 2021, DOI: 10.1039/D1NR02018H

An infographic summarising the content of the article “Tumor microenvironment-triggered in situ cancer vaccines inducing dual immunogenic cell death for elevated antitumor and antimetastatic therapy"

Meet the authors

Dr Binbin Ding Binbin Ding (丁彬彬)

Binbin Ding (丁彬彬) was born in Anhui, China, in 1991. He received his B.S. degree (2015) in Pharmaceutical Engineering from Hefei University of Technology, and his Ph.D. degree (2020) in Inorganic Chemistry under the guidance of Prof. Jun Lin at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. After graduation, he became an Assistant Professor in Prof. Jun Lin’s group. Now as the first author, he has published over 10 of papers in Adv. Mater., Angew. Chem. Int. Ed., Nano Lett., Chem. Mater., Nanoscale, etc. His current research focuses on the synthesis and bioapplications of nanoadjuvants.

Professor Ping'an Ma Ping’an Ma (马平安)

Ping’an Ma (马平安) was born in Jilin, China, in 1982. He received his B.S. degree in Biology in 2005 at Northeast Normal University, and his Ph.D. degree in Biochemistry in 2010 at Northeast Normal University. After graduation, he became an Assistant Professor in Prof. Jun Lin’s group and was promoted to Professor in 2020. Now he as the first author or corresponding author has published over 40 of papers in Adv. Mater., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Mater. Today, Nano Lett., Adv. Sci., Biomaterials, Chem. Mater., Small, Nanoscale, etc. His research focuses on the synthesis and application of multifunctional inorganic nanoparticles for bioapplication, particularly the design and mechanism of platinum-based anticancer drugs.

Professor Jun Lin Jun Lin (林君)

Jun Lin (林君) was born in Changchun, China, in 1966. He received B.S. and M.S. degrees in Jilin University, and a Ph.D. degree in Changchun Institute of Applied Chemistry (1995). His postdoctoral studies were performed at the City University of Hong Kong (1996), Institute of New Materials (Germany, 1997), Virginia Commonwealth University (USA, 1998), and University of New Orleans (USA, 1999). He has been working as a Professor at CIAC since 2000. His research interests include bulk- and nanostructured luminescent materials and multifunctional composite materials, together with their applications in display, lighting, and biomedical fields. So far he has published more than 700 peer-reviewed journal articles, such as Chem. Rev., Chem. Soc. Rev., Mater. Today, Nano Today, J. Am. Chem. Soc., Adv. Mater., Angew. Chem. Int. Ed., Nat. Commun., Coord. Chem. Rev., Adv. Funct. Mater., ACS Nano, Biomaterials, Chem. Mater., Small, Nanoscale etc. (over 100 papers with IF > 10), and these articles have totally been cited over 55000 times by others with a personal H index of 124 (Google Scholar).

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Ceria Nanoparticles to Fight Antibiotic-Resistant Bacteria

New Ceria Nanoparticles to Fight Antibiotic-Resistant Bacteria

An infographic highlighting ceria-based nanoparticles as intracellular antibacterial agents

We would like to share an infographic highlighting the excellent work by Inge K. Herrmann et al. on ceria/bioglass nanohybrids that significantly reduce bacterial survival inside human cells without harming the human cells, overcoming the major shortcomings of conventional antibiotics! Check out the infographic below to learn more or get the full story from their Nanoscale article.

Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages
Martin T. Matter, Meagan Doppegieter, Alexander Gogos, Kerda Keevend, Qun Ren and Inge K. Herrmann
Nanoscale, 2021, DOI: 10.1039/D0NR08285F

An infographic summarising the content of the article “Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages"

 

Meet the authors

Dr Martin T Matter

Martin T. Matter

Dr Martin T. Matter completed his BSc and MSc studies in Nanosciences at the University of Basel and pursued his doctoral studies in nanostructured surgical materials at ETH Zurich and Empa St. Gallen. Since 2020, he is working on translating a nanoparticle-based wound care platform technology from the lab to clinics. He has been awarded the ETH medal and MaP award for his outstanding doctoral thesis, the Empa Innovation Award, and the Swiss Nanotech Startup Award.

Professor Inge K Herrmann Inge K. Herrmann

Inge K. Herrmann is a chemical engineer with additional training in (pre)clinical research. After graduating with a PhD from ETH Zurich, she underwent further training at the University Hospital Zurich (USZ), the University of Illinois (US) and the Imperial College London (UK). Since 2015, she is heading a research group at the Swiss Federal Laboratories for Materials Science and Technology (Empa) specialized on nanoscale materials and devices for healthcare. In 2019, she joined the Department of Mechanical and Process Engineering as an assistant professor at ETH Zurich where she is heading the Nanoparticle Systems Engineering Lab. She has spearheaded several translational nanomedicine projects, and serves as a scientific advisor of the spin-offs hemotune, anavo and veltist commercializing technologies emerging from her lab. Inge has won various prestigious awards, including the Bayer Healthcare Award and the Johnson & Johnson Award, the Swiss National Science Foundation Eccellenza Fellowship, the Empa Innovation Award 2020 and the ETH Zurich Dandelion Award 2021 for interdisciplinary collaboration and entrepreneurship.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Microchip-Based Toolkit to Complement Protein Analysis Using Cryo-Electron Microscopy

Microchip-Based Toolkit to Complement Protein Analysis Using Cryo-Electron Microscopy

An infographic highlighting the structure determination of proteins including the first antibody binding site on the SARS-CoV-2 nucleocapsid (N) protein

We would like to share an infographic highlighting the excellent work by Deborah F. Kelly et al. on a microchip-based toolkit that performs complementary structural and biochemical analysis on low-molecular weight proteins alongside cryo-EM! Check out the infographic below to learn more or get the full story from their Nanoscale article.

Microchip-based structure determination of low-molecular weight proteins using cryo-electron microscopy
Michael A. Casasanta, G. M. Jonaid, Liam Kaylor, William Y. Luqiu, Maria J. Solares, Mariah L. Schroen, William J. Dearnaley, Jarad Wilson, Madeline J. Dukes and Deborah F. Kelly
Nanoscale, 2021, DOI: 10.1039/D1NR00388G

An infographic summarising the content of the article “Microchip-based structure determination of low-molecular weight proteins using cryo-electron microscopy"

Meet the authors

Dr Michael Casasanta

Michael Casasanta
Dr Michael Casasanta completed his PhD in Biochemistry at Virginia Tech and his post-doctoral training in Biomedical Engineering at Penn State University. Dr. Casasanta is currently a Senior Scientific Consultant working in the Boston area.
Professor Deb Kelly Deb Kelly
Dr Deb Kelly is a professor of Biomedical Engineering at Penn State University and the president-elect of the Microscopy Society of America. She directs the Center for Structural Oncology at the Huck Institutes of the Life Sciences where she holds the Lloyd and Dottie Foehr Huck Chair in Molecular Biophysics. Dr. Kelly co-leads the Next-Generation Therapies research program at the Penn State Cancer Institute and also holds an appointment in the Materials Research Institute.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale: Looking back at 2021

Looking back at 2021

An overview of the exciting events, activities and news for Nanoscale from 2021

Now that 2021 has come to an end, we look back at some of the exciting events and activities that happened last year for Nanoscale. Thank you for your engagement in 2021, and for enabling the journal to continue to support the community. With your support, we look forward to another great year for the journal in 2022.

Board updates

We welcomed Professor Jinlan Wang, Southeast University, China, to the Editorial Board of Nanoscale and Nanoscale Advances as an Associate Editor. Professor Shouheng Sun, Brown University, USA, and Professor Xiao Cheng Zeng, University of Nebraska-Lincoln, USA, completed their final terms as Associate Editors for Nanoscale and Nanoscale Advances in 2022 and joined our Advisory Board. We would like to thank them both for their excellent service to the journal and community over many years.

Professor Jinlan Wang, Professor Shouheng Sun and Professor Xiao Cheng ZengAlong with Professor Sun and Professor Zeng, we welcomed seven other new Nanoscale Advisory Board members in order to better represent the ever-increasing diversity of our authors and readers.

  • Suryasarathi Bose, Indian Institute of Science Bangalore, India
  • Wenlong Cheng, Monash University, Australia
  • Anna Fontcuberta i Morral, EPFL, Switzerland
  • Michael Sailor, University of California, San Diego, USA
  • Xiaoming Sun, Beijing University of Chemical Technology, China
  • Sarah Tolbert, University of California, Los Angeles, USA
  • Miqin Zhang, University of Washington, USA

A full list of the Nanoscale Advisory Board members can be found here.

Outstanding reviewers

Following on from recent years, Nanoscale once again recognised the significant contributions that our reviewers have made to the journal and highlighted the 2020 Outstanding Reviewers for Nanoscale in this Editorial.

Emerging investigators

In 2021, Nanoscale launched our inaugural Emerging Investigators themed collection, recognising the rising stars of nanoscience and nanotechnology in the early stages of their independent careers. Congratulations to all the featured researchers on their important work so far in the field. You can meet the featured authors in this Profile.

Themed collections

Nanoscale published six themed collections in 2021, and we have many more exciting themed collections planned.

Editor’s choice collections

Nanoscale published five Editor’s Choice Collections on topics selected by our Associate Editors. Look out for the upcoming collections that we will be publishing throughout 2022!

HOT articles

Finally, be sure to read the exciting articles featured in the 2021 Nanoscale HOT Article Collection.

 

The Nanoscale team wish you a Happy New Year!

 

With best wishes,

Dr Heather Montgomery

Managing Editor, Nanoscale

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale 2022 Lunar New Year Collection

Lunar New Year collection

A collection of our most popular articles from Asia

To celebrate the Lunar New Year, we are delighted to highlight some of the most popular articles, determined by their citations and page views, published in Nanoscale last year by corresponding authors based in Asia.

Read the collection

All of the articles in the collection are free to access until the end of March 2022. Read some of the featured articles below.

2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications
Yanpeng Xue, Gongchi Zhao, Ruiying Yang, Feng Chu, Juan Chen, Lei Wang and Xiubing Huang
Nanoscale, 2021, DOI: 10.1039/D0NR09064F

Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: a review of recent advancements
Jayakumar Perumal, Yusong Wang, Amalina Binte Ebrahim Attia, U. S. Dinish and Malini Olivo
Nanoscale, 2021, DOI: 10.1039/D0NR06832B

The flexibility-based modulation of DNA nanostar phase separation
Taehyun Lee, Sungho Do, Jae Gyung Lee, Do-Nyun Kim and Yongdae Shin
Nanoscale, 2021, DOI: 10.1039/D1NR03495B

An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management
Bing Zhou, Qingtao Li, Penghui Xu, Yuezhan Feng, Jianmin Ma, Chuntai Liu and Changyu Shen
Nanoscale, 2021, DOI: 10.1039/D0NR07840A

Incorporating highly basic polyoxometalate anions comprising Nb or Ta into nanoscale reaction fields of porous ionic crystals
Zhewei Weng, Naoki Ogiwara, Takashi Kitao, Yuji Kikukawa, Yu Gao, Likai Yan and Sayaka Uchida
Nanoscale, 2021, DOI: 10.1039/D1NR04762K

 

We hope you enjoy reading these popular articles and wish you a happy Lunar New Year!

With best wishes,

Dr Heather Montgomery

Managing Editor, Nanoscale

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)