Chinese scientists have made compact, self-powering, bendable photodetectors from tin dioxide cloth.
Flexible electronics are an exciting area of research with foldable displays and wearable electronics being potential uses. Self-contained power generation complements flexibility by removing the need for bulky external power supplies to make smaller devices more feasible.
Guozhen Shen from the Chinese Academy of Sciences, and co-workers at the Wuhan National Laboratory for Optoelectronics, have made tin dioxide cloth by growing tin dioxide nanoparticles on a carbon cloth template to give hollow microtubes of tin dioxide in a woven pattern. Tin dioxide is a wide band gap semi-conductor that has high quantum efficiency in the UV region, making it a good material for both battery electrodes and light sensing. Shen’s team integrated a tin dioxide cloth-based UV photodetector and a tin dioxide cloth-based lithium-ion battery into one device to form a flexible, self-powering photodetector that can be trimmed to match any shape. The detector’s performance is comparable to conventional devices and, importantly, no change in performance occurs when the cloth is folded.
Read more in the Chemistry World article by Emily Skinner.
And check out the original research in Nanoscale:
SnO2-microtubes-assembled cloth for fully-flexible self-powered photodetector nanosystems
Xiaojuan Hou, Bin Liu, Xianfu Wang, Zhuoran Wang, Qiufan Wang, Di Chen and Guozhen Shen
DOI: 10.1039/C3NR02300A