Archive for the ‘Hot Article’ Category

Pressure washer method for making graphene

New process generates high quality 2D crystals in minutes

Liquid-phase exfoliation of layered crystals

Source: © Royal Society of Chemistry

For few- and single-layered materials like graphene to be industrially useful there needs to be a scalable, cheap and reproducible way to produce them. Now, scientists in Italy have come up with a new exfoliation process that meets all of these requirements.

Francesco Bonaccorso and co-workers from the Italian Institute of Technology propose what they call a high pressure wet-jet-milling process to, essentially, blast apart layers of materials like graphite. A hydraulic mechanism and piston generate up to 250MPa of pressure to push a mixture of the bulk material dispersed in solvent through five different disks. The disks are interconnected and perforated with tiny adjustable holes (0.3–0.1mm diameter), which generate colliding jet streams. A similar idea is already used in industry to pulverise drugs or paints.

The major advantage here is that it takes only minutes to produce high quality 2D crystals that would take hours to make by other methods: it takes less than 3 minutes to make 1g. The resulting dispersions of 2D crystals are shown to be usable for inkjet printing and in battery anodes without needing a purification step.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Solar-Driven Nitrogen Fixation to Ammonia: Lighting the Way toward Green Chemistry

Is it feasible to convert nitrogen to ammonia using water and light?

With international collaboration, scientists from China and Singapore have looked into the aspect of the state-of-the-art engineering of photocatalysts for the nitrogen (N2) fixation toward understanding the ammonia (NH3) synthesis. The work was recently reported by Dr. Wee-Jun Ong and co-workers in Materials Horizons, which is featured on the Inside Front Cover in Volume 5, Issue 1 in 2018.

(a) An overview of the N2 cycle and circulation of N2 in various forms. (b) Diagram of the state-of-the-art milestone in the development of photocatalysts for N2 fixation.  Images adapted from Chen et al., Mater. Horiz., 2018, Advance Article with permission from The Royal Society of Chemistry. 

N2 is one of the most abundant gases on the Earth, comprising 78% in our atmosphere. Nonetheless, N2 in the gaseous state cannot be effectively utilized by organisms. Therefore, N2 must be “fixed” to make it valuable by breaking the strong NN triple bonds to transform it into a form that can be consumed by plants, animals and human beings. Hitherto, two typical methods to realize the fixation of N2 are: (1) a natural and bacterial process, and (2) the Haber-Bosch process in industry. For the last 100 years, the N2 conversion has led to the commercial fertilizer production and sustained the food intake supply for the worldwide population. However, the Haber-Bosch process consumes high pressures and temperatures, hence demanding a huge quantity (~2%) of the fossil fuel source. Thus, it is envisaged that the alternative process, which utilizes nanomaterials to absorb photon to mimic the natural photosynthesis in green leaves, can act as a paradigm shift for fixing nitrogen.

In this Review, the photo(electro)catalysts are classified based on the chemical compositions ranging from metal oxide to metal sulfide, bismuth oxyhalides, carbonaceous nanomaterials and other potential materials. The significance and relationship between the modification (e.g. nanoarchitecture design, crystal facet engineering, doping, and heterostructuring) and influences on the photo(electro)chemical activity of the catalysts are highlighted. Last but not least, to divert from the present laboratory-scale level to industrial applications, additional thoughts must be devoted to translating from academic research to practicality. How to amplify the yield of developed catalysts while preserving the intrinsic structures for the commercialization of “ammonia photosynthesis” is of universal challenge.

 

Read the full article here:
Xingzhu Chen, Neng Li,* Zhouzhou Kong, Wee-Jun Ong* and Xiujian Zhao
DOI: 10.1039/C7MH00557A

 

Wee-Jun Ong is a member of the Community Board for Materials Horizons. Currently, he works as a Staff Scientist in the Institute of Materials Research and Engineering (IMRE) at Agency for Science, Technology and Research (A*STAR) in Singapore. His research interests focus on photocatalytic, photoelectrochemical and electrochemical H2O splitting, CO2 reduction, N2 fixation and H2O2 production for energy conversion and storage via experimental and density functional theory (DFT) studies. At present, he also serves as the Associate Editor of Frontiers in Chemistry and Frontiers in Materials, and an Editorial Board Member of Scientific Reports, Nanotechnology and Nano Futures. Check out his personal research website here.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Enhanced lithium storage properties of oriented metal oxide nanodots on graphene

The synthesis of oriented metal oxide nanodots on graphene oxide (GO) sheets using a surfactant-directed assembly strategy was recently reported by Professor Liqiang Mai and co-workers in Materials Horizons. This technique presents a versatile and general method for the synthesis of carbon-confined metal oxide nanodots, as well as a way to significantly enhance the energy storage properties of metal oxide nanocomposites.

Tin dioxide (SnO2) is a promising candidate electrode material for high performance lithium-ion batteries, due to its high theoretical capacity. However, the large volume expansion caused by lithium intercalation into SnO2 (up to 300%) results in poor cycling stability. In this article, metal-ligand bonds were used to immobilise SnO2 nanodot precursors onto a functionalised GO surface. The nanodots were complexed with organic ligands and subsequently carbonised to form nanocrystalline carbon-confined metal oxide nanodots (C@SnO2@Gr). Nanocrystallinity was achieved through the mismatched coordination of the organic ligands, as the distortion prevented aggregation of the precursor and crystal growth across larger areas.

When tested in a lithium-ion battery, the C@SnO2@Gr nanodots were found to have exceptional cycling stability and capacity over 1200 cycles in comparison to similar carbonised SnO2 nanocomposites. The material also demonstrated excellent rate capabilities, facilitated by its high surface area.

This paper highlights a promising method for the general synthesis of metal oxide nanodots, including SnO2, Cr2O3, Fe3O4, and Al2O3. Furthermore, this method could be used to enhance the lithium storage capabilities of metal oxide materials for future energy storage applications.

 

Read the full paper here:
Jiashen Meng, Ziang Liu, Chaojiang Niu, Linhan Xu, Xuanpeng Wang, Qi Li, Xiujuan Wei, Wei Yang, Lei Huang and Liqiang Mai
Mater. Horiz., 2018, Advance Article
DOI: 10.1039/C7MH00801E

 

Markus Müllner is a member of the Community Board for Materials Horizons and an academic at The University of Sydney. Markus and Honours student Olivia McRae are interested in nanostructuring electrode materials to advance performance of lithium ion batteries. https://www.polymernanostructures.com/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Deep sight into the brain: organic nanoparticles for imaging in the second near-infrared window

Researchers have long been interested in peering into the brain. Added to the inherent challenge of imaging through biological medium, the skull presents a major barrier that highly attenuates light.

To overcome this barrier, in a recent communication in Materials Horizons, Guo et al. have synthesized an organic nanoparticle for photoacoustic imaging with absorbance in the second near-infrared window. At this wavelength, there is relatively low scattering from tissue allowing for deeper penetration of light.

Photoacoustic images of a brain tumor after nanoparticle injection. The grey ultrasound image shows the skin and the skull margin, and the green signal indicates the nanoparticle distribution. Image adapted from Guo et al., Mater. Horiz., 2017, Advance Article with permission from The Royal Society of Chemistry. 

Nanoparticles were made from benzodithiophene-benzobithiadiazole donor-acceptor pairs co-polymerized and nanoprecipitated using biocompatible materials. When these imaging nanoparticles were applied to mice with orthotopic brain tumors, tumors 3.4 nm below the skull were resolved with a nearly 100-fold increase in photoacoustic signal compared to before intravenous administration of nanoparticles. The stable, high contrast photoacoustic imaging nanoparticle presented in this work offers a versatile platform for simple chemical modifications such as ligand targeting or drug loading.

Future work remains on the horizon to advance these materials for imaging through the ~5 mm thickness of human skulls.

 

Read the full article here:
Bing Guo, Zonghai Sheng, Kenry, Dehong Hu, Xiangwei Lin, Shidang Xu, Chengbo Liu, Hairong Zheng and Bin Liu

 

Ester Kwon is a member of the Community Board for Materials Horizons. Currently, she works as an Assistant Professor in the Department of Bioengineering at University of California San Diego, USA. Check out her personal website here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Band-engineering in lead-free double perovskites

Hybrid double perovskites have recently gained a vast amount of attention in the research area of photovoltaics as lead-free alternatives to the ground-breaking parent material [CH3NH3]PbI3.1 In double perovskites with the general formula A2B’B’’X6, two Pb2+ cations are effectively replaced with a monovalent B’ and a trivalent B’’ cation. Among the many fascinating properties of hybrid inorganic-organic perovskites, it is arguably the combination of strong light absorbance and long carrier lifetimes that make them so interesting for photovoltaic applications and light-emission devices. Recent experimental and theoretical studies on [CH3NH3]PbI3 revealed a direct-indirect character of the bandgap, i.e. [CH3NH3]PbI3 exhibits a direct band gap which is only approximately 47-60 meV higher in energy than the indirect band gap. Presumably, this is the origin of the paradox of strong absorption and long charge carrier lifetimes. When now turning our attention to lead free double perovskites, examples such as [CH3NH3]2KBiCl6 and [CH3NH3]2AgBiBr6 exhibit an indirect band gap,1 hence unfavourable light absorption properties. The symmetry mismatch that leads to the indirect band gap in such materials was recently studied by D. O. Scanlon and A. Zunger theoretically.2,3 Consequently, it is important to ask the question: is it possible to experimentally design a direct band gap in double perovskites?

In the recent article in Materials Horizons, ‘Designing Indirect-Direct Bandgap Transitions in Double Perovskites’,4 T. M. McQueen and co-workers have tackled this important question, studying the solid solution Cs2AgIn1-xSbxCl6 as a prototypical example. By wisely choosing B’ and B’’, a direct band gap in Cs2AgInCl6 has been achieved. The beauty lies in the simplicity of the concept – the understanding of band theory, i.e. symmetry and formation of bands with s-type and p-type character, see Figure 1. Going along the solid solution Cs2AgIn1-xSbxCl6, the valence band remains basically unchanged, whilst the character of the conduction band is continuously altered from s-type to p-type character. Clearly, the use of a chloride and in turn the ionic character of the solid with a band-gap larger than 3.5 eV limits the application of Cs2AgInCl6 in optoelectronics. However, the results depict a textbook example of how to manipulate properties in crystalline materials and open exciting opportunities for going forward in the field. For instance, one can easily envision a computational screening study of potential A2B’B’’X6 perovskites by using symmetry-based descriptors. Furthermore, it is important to note, that band engineering is a common concept in related areas of materials science, such as thermoelectrics and magnetic materials, and is a common tool for solid state chemists in general. Therefore, it is refreshing to see that band engineering now enters arguably one of the most fascinating developments of materials science within the last decade.

 

Figure 1. Schematic presentation of the orbital overlap (a) and the energy as a function of k for bands of s and p-σ orbitals (b) in a linear chain.

 

[1] F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D. Bristowe, A. K. Cheetham ‘The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskites (MA)2KBiCl6 (MA = methylammonium)Mater. Horiz. 2016, 3, 328.

[2] C. N. Savory, A. Walsh and D. O. Scanlon ‘Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?’ ACS Energy Lett. 2016, 1, 949.

[3] X.-G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, A. Zunger ‘Cu-In Halide Perovskite Solar Absorbers’ J. Am. Chem. Soc. 2017, 139, 6718.

[4] T. Thao Tran, J. R. Panella, J. R. Chamorro, J. R. Morey, T. M. McQueen ‘Designing Indirect-Direct Bandgap Transitions in Double PerovskitesMater. Horiz. 2017, DOI: 10.1039/C7MH00239D.

 

Dr Gregor Kieslich is a Liebig-Fellow at Department of Chemistry, Technical University of Munich and is a member of the Community Board for Materials Horizons. He is an inorganic chemist focusing on crystal chemistry and structure–property relations in functional solids and hybrid frameworks: https://kieslichresearch.wordpress.com/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A laser “writing” method for easily adjustable and complex 3D structures – a new HOT article

Different 3D structures created

Photographs of different 3D shapes generated from the same stretched Nafion/PDA films treated with a NIR laser with different facular region shapes.

A new and highly adaptable way to make 3D structures in a wide range of different shapes has been reported in a new HOT article, published in Materials Horizons. The technique allows adjustment of both the shape transition process and the final shape at the same time.

The strategy, which Jian Ji’s group at Zhejiang University describe as a “writing” process, uses polymer nanosheets as blank “paper”. These are guided into making specific shape changes with a near infra-red laser beam “pen”. By controlling which shape changes happen at which time, several sheets can be woven together into a complex interlocking structure. Unlike previous techniques, the order of these changes can be easily altered to change the interlocking pattern.

Ji’s group used pre-stretched composite sheets of Nafion, a shape memory polymer, and polydopamine. When a NIR laser was applied to specific parts of the nanosheet, the polydopamine converted the light energy into heat. This caused internal stress between the heated and non-heated parts, triggering a shape transition of the sheet to relieve the stress. Changing the shape or intensity of the laser beam or where it was applied modulated the shape change, giving rise to a huge number of possible shapes.

Because the nanosheets don’t require special pretreatment before forming each particular shape, a variety of shapes can be made from the same starting material in quick succession. The technique could in future be used to make “personalised” components for the healthcare industry.

Read the full article here:
A ‘‘writing’’ strategy for shape transition with infinitely adjustable shaping sequences and in situ tunable 3D structures
Tingting Chen, Huan Li, Zuhong Li, Qiao Jin and Jian Ji
Mater. Horiz., 2016, DOI: 10.1039/C6MH00295A

Susannah May is a guest web writer for the RSC Journal blogs. She currently works in the Publishing Department of the Royal Society of Chemistry, and has a keen interest in biology and biomedicine, and the frontiers of their intersection with chemistry. She can be found on Twitter using @SusannahCIMay.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: Thermally reversible full color selective reflection in a self-organized helical superstructure enabled by a bent-core oligomesogen exhibiting a twist-bend nematic phase

Fig. 1 Chemical structure of the bent-core oligomesogen 1 exhibiting different phases

A new helical superstructure that reflects light across the whole visible system has been reported in a new HOT article. The structure can be tuned to reflect light from ultraviolet through to near infra-red, in a wide temperature range. 

Liquid crystals are intriguing materials which have properties of both liquids and crystals. They have found uses in many day-to-day applications, such as flat-screen televisions, but much about them, and the many phases they can exhibit, remain unknown.

Quan Li’s group, at State Kent University, had previously designed a new achiral liquid crystal trimer with a twist-bend nematic phase. In this experiment they doped it into a chiral liquid crystal (CLC) to see what effect it would have. As expected, adding the trimer increased the CLC’s chirality, forming a helical structure. More surprisingly, it also increased the temperature range of the liquid crystal phase, proportionally with the concentration of trimer added. What’s more, the resulting superstructure reflected light across the whole visible spectrum. The specific wavelength reflected could be reversibly tuned by adjusting the temperature, meaning the structure could reflect different colours of light at different temperatures.

The group think that strong molecular interactions between the CLC molecule and rod-like units of the trimer cause the effect. In future the superstructure could be used to make colour-display thermometers, and demonstrates the potential of doped liquid crystal systems in obtaining new fascinating properties.

Read the full article here:
Thermally reversible full color selective reflection in a self-organized helical superstructure enabled by a bent-core oligomesogen exhibiting a twist-bend nematic phase
Yuan Wang, Zhi-gang Zheng, Hari Krishna Bisoyi, Karla G. Gutierrez-Cuevas, Ling Wang, Rafael S. Zola and Quan Li
Mater. Horiz., 2016, DOI: 10.1039/C6MH00101G

Susannah May is a guest web writer for the RSC Journal blogs. She currently works in the Publishing Department of the Royal Society of Chemistry, and has a keen interest in biology and biomedicine, and the frontiers of their intersection with chemistry. She can be found on Twitter using @SusannahCIMay.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons author profile: Jean-Luc Bredas

Materials Horizons Advisory Board member, Jean-Luc Brédas, is the author of the journal’s first Focus article, Mind the gap! Focus articles are educational pieces, intended to explain or clarify topics relevant to the understanding of materials science. In his article, Professor Brédas seeks to clear up the confusion surrounding the many types of energy gap relevant to organic materials, and calls for a more rigorous use of the appropriate terminology. Here we find out more about the author, and why he chose to write this article for Materials Horizons.

Jean-Luc Brédas is Regents’ Professor of Chemistry and Biochemistry at Georgia Institute of Technology. He began his research career at the Université de Namur, Belgium, where he completed a Ph.D. in Theoretical Chemistry.  Since then, he has held positions at Université de Mons, Belgium, the University of Arizona, USA, and King Abdulaziz University in Saudi Arabia. He is the author or co-author of over 950 scientific papers and has presented over 500 invited talks at scientific meetings and seminars.

Professor Brédas has been awarded numerous prizes in recognition of his work, including the Triennal Prize of the Royal Society of Chemistry, Belgium, (1991), the Francqui Prize (1997), the Descartes Prize of the European Commission (2003) and the Georgia Institute of Technology Outstanding Faculty Research Author Award (2008). In 2013, he received the American Physical Society David Adler Lectureship Award in Materials Physics.  He has been a Fellow of the Royal Society of Chemistry since 2008.

The research activities of Professor Brédas’ group are focused on the computational characterization and design of novel organic materials of relevance for organic electronics and photonics.

What was the motivation to write your Materials Horizons Focus article?
There were two major reasons: The first is the original concept behind these Focus articles, which I believe is unique to Materials Horizons. The second is that many of my colleagues and myself were becoming increasingly frustrated by the lack of rigor surrounding the use of common terminologies in materials research articles, in particular with regard to energy gaps and energy levels in electro-active organic materials. Hence, when Seth Marder came to me with a proposition to write such a Focus article, he met no resistance!

At which upcoming conferences may our readers meet you?
In the spring, I’ll participate in SPIE Photonics West in San Francisco, the ACS National Meeting in Dallas, and the MRS Spring Meeting (again in San Francisco).

How do you spend your spare time?
Soccer, or should say much more appropriately football, is my main passion besides science. I still try to play as much as I can especially with my students. Also, I very much enjoy tending to the four fish tanks I have at home, with fish (cichlids) mainly from the Central Africa Lakes: Tanganyika and Malawi.

Which profession would you choose if you were not a scientist?
This is a tough question because I cannot picture myself doing something else really. The fulfillment that scientific research, teaching students, and making friends all over the world bring, would be in my mind very difficult to match. But to answer the question, maybe I’d like to be in the sports business, for instance as a commentator.

Mind the gap!

Jean-Luc Brédas
Mater. Horiz., 2014, 1, 17-19
DOI: 10.1039/C3MH00098B

‘The energy gap is a critical material parameter. Here, we illustrate the concepts behind the various flavors of energy gaps relevant for organic materials and call for a more consistent use of appropriate terminologies and procedures.’

 

 

Follow the latest journal news on Twitter @MaterHoriz or go to our Facebook page.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons author profile: Professor Gordon Wallace

You may have seen Gordon Wallace’s recent Materials Horizons communication on liquid crystalline dispersions of graphene oxide. (If not, take a look here; it’s free to access!) Here, we profile the author, and ask him about his experience with Materials Horizons.

Professor Gordon Wallace is currently the Executive Research Director at the ARC Centre of Excellence for Electromaterials Science and Director of the Intelligent Polymer Research Institute. He previously held an ARC Federation Fellowship and currently holds an ARC Laureate Fellowship. Professor Wallace’s research interests include organic conductors, nanomaterials and electrochemical probe methods of analysis, and the use of these in the development of Intelligent Polymer Systems. A current focus involves the use of these tools and materials in developing bio-communications from the molecular to skeletal domains in order to improve human performance via medical Bionics.

With more than 700 refereed publications, Professor Wallace has attracted some 17,000 citations and has a h-index of 61. He has supervised 77 PhD students to completion at the Intelligent Polymer Research Institute and currently co-supervisors 30 PhD students.

Professor Wallace is an elected Fellow at the Australian Academy of Science, the Australian Academy of Technological Sciences and Engineering, the Institute of Physics (UK) and the Royal Australian Chemical Institute. In addition to being named NSW Scientist of the Year in the chemistry category in 2008, Professor Wallace was also appointed to the Korean World Class University System, and received the Royal Australian Chemical Institute HG Smith Prize.

Why did you choose Materials Horizons to publish your exciting work?
I like the approach that combines education and digestible insights with the forefront of research. More and more I realise the critical need to communicate advances in knowledge emanating from the research laboratory to a broad cross section of our communities as effectively and efficiently as possible.

How did you find the Materials Horizons publication process?
The process was effective and efficient.

What topics would you like to see covered in future issues of Materials Horizons?
I think some coverage of advances in BioAFM would be most timely.

 

Formation and processability of liquid crystalline dispersions of graphene oxide
Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Joselito M. Razal, Simon E. Moulton and Gordon G. Wallace
Mater. Horiz., 2014, Advance Article DOI: 10.1039/C3MH00050H

Manipulation of graphene oxide sheets to form liquid crystalline dispersions enabling fabrication of multifunctional 3D-structures.

 

 

Follow the latest journal news on Twitter @MaterHoriz or go to our Facebook page.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons – new advanced articles have been published!

Molecular Crystalline Materials with Tunable Luminescent Properties: From Polymorphs To Multi-component Solids
Dongpeng Yan and David G. Evans

Tuning and controlling the luminescent properties of molecular materials by changing the orientation and arrangement of the fluorophores within a solid has played an important role in realizing multi-color emission. The formation of polymorphs and multi-component molecular solids have attracted considerable interest as new ways of achieving controllable luminescence and other photophysical properties for application in the next generation of photofunctional materials. In this article, recent advances in the synthesis of fluorescent polymorphs and multi-component materials and potential photo-related applications of the resulting materials are described. We first review the methods of preparation of polymorphs with tunable static luminescence, and the switching of the dynamic luminescence between polymorphs for potential sensor applications is also introduced. Attention is then focused on the supramolecular design (making use of hydrogen bonding and halogen bonding interactions) and methods of fabrication of multi-component molecular solids, and their color-tunable fluorescence and phosphorescence together with their stimuli-responsive properties for use as sensors. The use of density functional theory to study intramolecular and intermolecular energy transfer as well as the electronic structures of multi-component molecular solids is also outlined. Finally, we briefly discuss perspectives for the further development of these luminescent molecular solid-state materials.

Mater. Horiz., 2014, DOI: 10.1039/c3mh00023k, Advance Article

A Shape-memory scaffold for macroscale assembly of functional nanoscale building blocks
Huai-Ling Gao, Yang Lu, Li-Bo Mao, Duo An, Liang Xu, Jun-Tong Gu, Fei Long and Shu-Hong Yu

A shape-memory chitosan scaffold (CSS) fabricated by an ice-templated method can be used as a versatile host matrix for self-assembly of a wide range of functional nanoscale building blocks, and thus it can produce a family of functional three-dimensional (3D) macroscale assemblies, which show promising practical application potential in various fields.

Mater. Horiz., 2014, DOI: 10.1039/c3mh00040k, Advance Article

 
 
 
 
 
 
 

Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings

Robert J. Moerland, Jenni E. Koskela, Aleksandr Kravchenko, Mikael Simberg, Stefan van der Vegte, Matti Kaivola, Arri Priimagi and Robin H. A. Ras

The field of plasmonics allows for confinement and control of light on the nanoscale. Due to potentially strong resonant interactions that light can have with metal nanoscale structures, metals are a good candidate to tailor interactions with light, e.g., periodic arrays of subwavelength metal structures can support extremely narrow resonances and show enhanced transmission. The field of plasmonics has evolved from using simple geometries to the desire to create complex nanostructures for improved control. The availability of fabrication techniques that provide for complex structures, however, is paired with the seemingly inevitable increase in complexity of fabrication techniques themselves. We present a facile and scalable method for the fabrication of periodic arrays of unique three-dimensional subwavelength-sized structures such as tapered holes and pyramidically shaped subwavelength-sized particles. The procedure consists of holographic inscription of a two-dimensional surface-relief grating in an azobenzene-containing polymer film, evaporative gold deposition and broad-beam ion milling of the relief structure. The method allows the fabrication of highly uniform arrays with tunable lattice parameters and dimensions over large sample areas. The optical response of the fabricated structures is determined experimentally and through simulation, which confirm the unique plasmonic response of the structures. While the proposed fabrication method has clear benefits for plasmonics, it could easily be applied also in other fields, for example by using other coating materials.

Mater. Horiz., 2014, DOI: 10.1039/c3mh00008g, Advance Article

Magnesium-air battery: from principle to application

Tianran Zhang, Zhanliang Tao and Jun Chen

Metal–air batteries are important power sources for electronics and vehicles because of their remarkable high theoretical energy density and low cost. In this paper, we introduce the fundamental principles and applications of Mg–air batteries. Recent progress in Mg or Mg alloys as anode materials and typical classes of air cathode catalysts for Mg–air batteries are reviewed. In the meantime, different compositions of the electrolyte are also compared. The design of electrode materials both for anodes and cathodes of Mg–air batteries is discussed for further performance improvement. It is noted that in the development of rechargeable Mg–air batteries, bi-functional catalysts with reversible oxygen reduction and evolution reactions are facing challenges and it is worthwhile devoting much effort to this.

Mater. Horiz., 2014, DOI: 10.1039/c3mh00059a, Advance Article
 
  
 

Formation and Processability of Liquid Crystalline Dispersions of Graphene Oxide

Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Joselito M. Razal, Simon E. Moulton and Gordon G. Wallace

Rational control over the formation and processability, and consequently final properties of graphene oxide liquid crystalline dispersions has been a long-standing goal in the development of bottom-up device fabrication processes. Here we report, the principal conditions through which such levels of control can be exercised to fine-tune dispersion properties for further processing.

Mater. Horiz., 2014, DOI: 10.1039/c3mh00050h, Advance Article

 
 
   
 
 
 
 
 
 
 

Follow the latest journal news on Twitter @MaterHoriz or go to our Facebook page.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)