Archive for the ‘Community Spotlight – Emerging Investigators’ Category

Materials Horizons 10th Anniversary ‘Community Spotlight’ – Meet our Emerging Investigators Part 3

Introducing Materials Horizons’ Emerging Investigators 2022.

This year we are pleased to celebrate the tenth anniversary of Materials Horizons. We are so grateful to our fantastic community of authors, reviewers, Board members and readers and wanted to showcase just some of them in a series of ‘Community Spotlight’ blog articles.

In our fifth ‘Community Spotlight’, we feature some of our past ‘Emerging Investigators’ who have contributed their outstanding research to Materials Horizons.

Our Emerging Investigators series highlights early career scientists who have excelled in their field and work to provide quality research and communications in order to contribute to the constant evolution of chemical sciences. We asked some of our past Emerging Investigators about their experience as up-and-coming researchers and how their work has developed from early career stage to now. Check out their interview responses below.

 

Dr. Filip Podjaski, Emerging Investigator 2022

Imperial Collage London, UK

“My parents immigrated from Poland to Germany when I was a child. I grew up bilingually, which was very helpful to learn foreign languages (English, French, Spanish, Russian) and to get in touch with different cultures and mindsets. Since adolescence I was fascinated by the natural sciences and what technologies they enable. Consequently, I studied physics, at the University of Göttingen (D) and in Lyon (FR) with a focus on material properties and energy related applications.

During my PhD in the Nanochemistry department (Prof. Lotsch) at the MPI for Solid State Research (D) and at EPFL (CH), I broadened my horizons in physical chemistry and worked on photocatalysis and electrocatalysis for green hydrogen production as well as on organic materials combining light absorption and battery like energy storage intrinsically – a new and promising technology still fascinating me. I hence stayed at MPI as postdoc and became group leader to drive its development for 3 more years. Research placements at UC Santa Barbara, USA (Prof. Seshadri) and in the Institute of Material Science Seville, ES (Prof. Míguez) strongly enriched me.

Since August 2022, I am a UKRI Research Fellow in the group of Prof. James Durrant, Imperial College London (UK), where I deepen my knowledge in probing fundamental photophysical properties of light driven organic semiconductors on different time scales to better understand and tailor their function for solar fuel production.

My research interests are related to energy conversion applications and tailored material property modifications, which can be driven by light or electricity. They span over the disciplines of physics and chemistry, and partially affect biomedical applications.

 

Being concerned by increasing environmental challenges, I focus on fundamental processes of electrocatalytic and photocatalytic renewable fuel synthesis, mostly for green hydrogen production. Especially complex and organic based semiconductor systems fascinate me in this context, since they are tailorable bottom-up in principle in their structure and function. But there is much to discover about their photophysical properties and its coupling to performance. At Imperial College London, I currently investigate which chemical adaptations are helpful to make organic photocatalysts work efficiently in more natural environments, and not only in ultra-pure lab conditions.

 

Photocharging materials and resulting property modification effects are my other main research interest. Such a function typically relies on ionic interactions and goes in hand with energy and information storage. But relatively little is known about this growing field. I am keen to explore their thermodynamic and kinetic property requirements, to establish efficient structure-property relationships and new technological applications for such novel and adaptive materials. Examples for photocharging materials’ applications I recently showed with colleagues are solar batteries that enable to use renewable electricity on demand, or photo-memristive sensors that intrinsically store concentration information of analytes they can interact with in biological contexts. Light-driven micro-robotics I studied with colleagues from MPI-IS (Prof. Sitti) in biological contexts are another practical example. Remote charging or propulsion by light, as well as its use for local sensing and drug delivery has exciting potential. And if such materials and devices were tailored from organic semiconductors, more technology could become fully green and sustainable.”

 

What inspired you to pursue a career in your specific field of research?

“Primary inspiration probably came from good teachers at school (math, physics, chemistry). I chose a career in applied natural sciences for three reasons: (i) personal curiosity for profound understanding of physics and chemistry and how this translates into technology, (ii) for altruistic reasons – I wanted to contribute something good, new and lasting to our society by research and development, and (iii) because of my creativity and joy in working with different people, which in my opinion is best applied in natural sciences and with academic freedom. Research on renewable energy conversion and sustainable fuel production (photocatalysis, electrocatalysis) was my first choice due to its obvious immediate need, and because it requires interdisciplinary knowledge I wanted to develop. My enthusiastic PhD supervisors Prof. Bettina Lotsch and Prof. Anna Fontcubetra i Morral, as well as my current host and mentor Prof. James Durrant further inspired me as people who take a lot of joy and personal energy from driving fundamental research and understanding. Further inspiration comes from amazing community feedback on the relatively new topic of photocharging materials. I want to focus even more on it in future – for its relevance to energy supply technology and its broad applicability beyond (see next question). The interdisciplinary and creative research required here is also a beautiful challenge and inspiration to me.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“I think the relatively young research area of photocharging materials is particularly exciting and promising. Combing the function of solar cells and batteries in single bifunctional materials is what I feel is highly demanded in times of climate change and (potential) conflicts arising for access to natural resources. However, photo-battery concepts relying on such bifunctional materials are still scarce, have very limited efficiencies and require much more research. Photocharging effects can in principle also affects materials used for photoelectrochemistry or photocatalysis, which become more efficient due to doping or trap passivation going in hand with photo-induced charge accumulation. In parallel, structural and physical or chemical material properties can be modified by photocharging, akin to photo-switches. Their analysis can be used for sensing applications. Related research areas are the just emerging optoionics, where light induces changes in ionic concentrations and conductivity, thereby potentially improving material performance. Since photocharging can also be seen as memristive effect that captures light driven processes over time, its use for information processing is also foreseeable. Memristors as logical circuit elements are also being discussed for so called neuromorphic computing and information processing applications that could well interface with next generation IT or biomedical applications. I would be happy to help developing these areas. It represents a complex field bridging semiconductor physics, battery research, electrochemistry, photocatalysis and engineering, which are rarely combined. So little people have a holistic view and understanding. But I hope that it will change soon and that more and more people will follow up.

In terms of solar fuel production, I think that hydrogen is obviously of highest relevance. Especially when it comes to its generation by cost-efficient organic based materials and in more natural conditions, which is rarely the case, more research is needed. We need hydrogen not only as energy carrier, but also for other (photo)synthetic process such as syngas and ammonia production. In line with this, I am highly convinced of the promise in nitrogen reduction research, since ammonia is one of the products. Besides being a convenient, safe and high energy density fuel, it is also required for many industrialized processes and fertilizer synthesis, while already having a good distribution infrastructure.”

 

Read Filip’s featured Materials Horizons article here:

Photomemristive sensing via charge storage in 2D carbon nitrides.

Andreas Gouder, Alberto Jiménez-Solano, Nella M. Vargas-Barbosa, Filip Podjaski and Bettina V. Lotsch.

Mater. Horiz., 2022,9, 1866-1877. DOI: 10.1039/D2MH00069E

 

 

 

Dr Jie Jang, Emerging Investigator 2022

Central South University, China

 

Jie Jiang is an Associate Professor of School of Physics and Electronics at Central South University. He obtained the B.E. degree (2007), M.E. degree (2009), and the Ph.D. degree (2012) from Hunan University. He was a Post-doctoral Fellow in Nanyang Technological University (2012-2013 in Singapore) and Auburn University (2014-2015 in USA), respectively. His research interests focus on neuromorphic photoelectric hybrid devices based on thin-film oxide and 2D semiconductor materials. He is the Youth Editor in Nano-Micro Letters, Science China-Materials, Brain-X, International Journal of Extreme Manufacturing. He has published as first author/corresponding author about 60 papers which are often highlighted by NPG Asia Materials, Material Views-China, X-MOL, etc.

 

What inspired you to pursue a career in your specific field of research?

“When I was young, I was very interested in nature. When I grew up, I was more interested in the mathematics. However, I wanted to start my research career facing modern industry. Therefore, my current research is focused on the advanced semiconductor devices, especially for the neuromorphic intelligent devices.”

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“I think the polarization light detector has seen growing attention. However, my research demonstrates that it can also extended to be used in the polarization-sensitive neuromorphic computing which has been never reported. It may provide a promising opportunity for the next-generation of intelligent optoelectronics.”

 

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“I am very honored to be an Emerging Investigator. It seems that my research has gone well since.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“I think the chip-integrated neuromorphic electronics and polarization-perceptual neuromorphic optoelectronics are two exciting points in my research field.”

 

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

The interest is most important thing. The research should also be guided toward the direction which is most different from others.”

 

What are some of the main challenges or obstacles you have encountered while conducting your research, and how have you overcome them?

“Sometimes my lab doesn’t have the equipment we need. Therefore, we must either get help from others or do the work that we can.”

 

Read Dr Jang’s featured Materials Horizons article here:

Polarization-perceptual anisotropic two-dimensional ReS2 neuro-transistor with reconfigurable neuromorphic vision.

Dingdong Xie, Kai Yin, Zhong-Jian Yang, Han Huang, Xiaohui Li, Zhiwen Shu, Huigao Duan, Jun He and Jie Jiang.

Mater. Horiz., 2022,9, 1448-1459. DOI: 10.1039/D1MH02036F

 

 

 

Dr Mohammad Mirkhalaf, Emerging Investigator 2022

Queensland University, Australia.

Mohammad Mirkhalaf is a Lecturer and ARC DECRA fellow at the Queensland University of Technology (QUT). He has obtained his PhD from McGill University, Master’s from Nanyang Technological University (NTU), and Bachelor’s from Isfahan University of Technology (IUT). After finishing PhD in 2015, he joined the National Research Council of Canada as a postdoctoral fellow working closely with his previous lab at McGill till August 2018 when he joined the University of Sydney. He joined QUT in Jan 2022. His research is on tailoring materials’ internal architecture to achieve properties and functionalities beyond those of constituents.

 

What inspired you to pursue a career in your specific field of research?

“We are all part of nature. After all, we can be perceived as live materials with intelligence. Doing research in natural and bioinspired materials has been perhaps a way for me to try to understand nature and, as such, human better.”

 

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“Besides research, recognition is a result of being with supportive and understanding people. Let us pay our deepest respect to the people who contribute to providing supportive environments for their younger (and usually less experienced) colleagues.

In terms of research, whatever is triggered by scientific curiosity is exciting: enthusiasm to understand something better or to develop something new or more efficient brings the capacity to do so. We should just not forget that it takes time and continuous effort. I think the research that was kindly highlighted in the emerging investigator series was driven by the excitement to find a way to form ceramics into complex shapes using an efficient and relatively easy pathway.“

 

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“I think trust is a fundamental element in progress. Trust in your ability to do something but also trust in people who are there to help you. I think being featured as an emerging investigator strengthened both elements (of trust) in me. Thanks for the opportunity.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“We do certain things to pay our bills and have a protective roof. But beyond that, whatever we do should be responsibly done for the next generations. They are our continuation. With their being is our being. So in the future, I will aim to find ways to perform my research (which is on developing new materials and architectures) sustainably from nature, for nature (all beings), to nature.

We are going to lack resources and so are in search of life/resources on other planets. Much research, including on new materials, is channelled towards this goal. The question is: if in this search for life in other planets, we are harming our own earth, aren’t we defeating the purpose? We perhaps need to first keep our mother earth as intact as possible through sustainable technologies and then satisfy our other curiosities based on this principle of sustainability. We (scientists and engineers) can play a major role here. Other areas that interest me currently are using engineering mechanisms to reversibly and drastically tailor the internal architecture of materials, and the ethical aspects of live materials and artificial intelligence.”

 

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

“I am still in the early- to-mid stages of my career, so I am not sure if I am eligible to answer this question. But I am happy to have a discussion on this. I guess one important aspect is to go to the core of the problem. Every problem has a surface, but the beauty lies within the deeper layers. For example, a few hundred years ago, a designer could think of this problem: how thick the feet of a wooden chair should be to resist one’s weight? Or going to deeper layers, one could ask: what governs the deformation and failure of the chair’s feet? How can we prevent excessive deformation/failure? Are these governing rules the same for all materials? Trying to answer the latter set of questions has led to significant contributions to the mechanics of materials. Answering the former question would result in a chair on which people could sit. Both are valuable but satisfy different desires.

I think another key is trust as we discussed. There are elite people in academia who know much more than early career researchers about academic progress/potential. Being in touch with these people and trusting them brings stability and focus to a curious soul.”

 

What are some of the main challenges or obstacles you have encountered while conducting your research, and how have you overcome them?

“Our biggest enemy lies within us. In search of truth, one should be truthful. I must admit it might be hard for a scientific mind to carry the burden of a societal construction and politics that tend to be quite good at (sometimes) bending the truth. But we (humans) have made significant progress in discovering the essence of things properly, and I think we will get better. Intellectuals, many of whom work in academia (including my current and previous mentors), have taught us the way to scientific discoveries: reading/understanding the literature, discussing it, accepting criticisms and strong arguments even though they go against our thoughts, fact-checking, and readiness to reconstruct thoughts if needed. These are the principles I try to follow to tackle challenges. Thanks for the opportunity to discuss thoughts.”

 

Read Mohammad’s featured Materials Horizons article here:

Rationally-designed self-shaped ceramics through heterogeneous green body compositions.

Zizhen Ding, Hala Zreiqatbc and Mohammad Mirkhalaf.

Mater. Horiz., 2022,9, 2762-2772. DOI: 10.1039/D2MH00785A

 

 

 

Dr Kai Wang, Emerging Investigator 2022

Soochow University, China

 

Kai Wang received his BSc degree from the Department of Materials Science and Engineering, Beihang University in 2012, and received his PhD degree from the Technical Institute of Physics and Chemistry of Chinese Academy of Sciences in 2017. Then, he carried out postdoctoral research at the Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University.  Now, he is an associate professor at Soochow University. His research interest mainly focuses on high-performance organic optoelectronic materials and their device applications.

 

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“The purpose of the research is to address fundamental questions regarding the spectral broadening and concentration quenching in solid-state multiple resonance (MR) type thermally activated delayed fluorescence (TADF) systems. Previous studies often overlooked or briefly mentioned these issues as they focused primarily on developing new materials. However, these issues are crucial in understanding the behaviour of MR-TADF systems in solid states. Our research is the first to comprehensively investigate and provide answers to these general questions. We have determined that spectral broadening is caused by the formation of excimers resulting from π-π interactions, while concentration quenching is a result of triplet exciton annihilation. These findings are essential for a deeper understanding of the behaviour of MR-TADF systems.”

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“In my view, the emerging category of materials known as multiple resonance (MR) emitters and their associated device applications are highly promising in the realm of organic light-emitting diodes (OLEDs). These materials have the ability to achieve remarkably efficient narrowband emission, surpassing even that of inorganic systems. This challenges our existing understanding of organic systems and allows OLEDs to remain competitive in the era of ultrahigh definition displays. Moreover, they hold significant potential for use in organic laser diodes, a shared aspiration among researchers in the field of organic optoelectronics.”

 

Read Kai Wang’s featured Materials Horizons article here:

Distinguishing the respective determining factors for spectral broadening and concentration quenching in multiple resonance type TADF emitter systems.

Feng Huang, Xiao-Chun Fan, Ying-Chun Cheng, Hao Wu, Yi-Zhong Shi, Jia Yu, Kai Wang, Chun-Sing Lee and Xiao-Hong Zhang.

Mater. Horiz., 2022,9, 2226-2232.  DOI: 10.1039/D2MH00511E

 

 

We hope you enjoy reading these interviews from our Emerging Investigators. You can find all our past Emerging investigator editorials and featured articles here:

 

Emerging Investigators 2020/2021

Emerging Investigators 2022/2023

 

Or to read more of our community spotlight blog, return to the home page here

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons 10th Anniversary ‘Community Spotlight’ – Meet our Emerging Investigators Part 2

Introducing Materials Horizons’ Emerging Investigators 2020/2021 – Part 2.

This year we are pleased to celebrate the tenth anniversary of Materials Horizons. We are so grateful to our fantastic community of authors, reviewers, Board members and readers and wanted to showcase just some of them in a series of ‘Community Spotlight’ blog articles.

In our second ‘Community Spotlight’, we feature some of our past ‘Emerging Investigators’ who have contributed their outstanding research to Materials Horizons.

Our Emerging Investigators series highlights early career scientists who have excelled in their field and work to provide quality research and communications in order to contribute to the constant evolution of chemical sciences. We asked some of our past Emerging Investigators about their experience as up-and-coming researchers and how their work has developed from early career stage to now. Check out their interview responses below.

 

Eleni Stavrinidou, Emerging Investigator 2021
Linköping University, Sweden

Photo of Eleni Stavrinidou

Eleni Stavrinidou is an Associate Professor and leader of the Electronic Plants group at Linköping University. She received a PhD in Microelectronics from EMSE (France) in 2014. She then did her postdoctoral training at Linköping University (Sweden) during which she was awarded a Marie Curie fellowship. In 2017 Eleni Stavrinidou became Assistant Professor in Organic Electronics at Linköping University and established the Electronic Plants group. She received several grants including a Swedish Research Council Starting Grant and a FET-OPEN grant which she was the coordinator. In 2020 she became Associate Professor and Docent in Applied Physics. The same year she was awarded the Future Research Leaders grant of the Swedish Foundation for Strategic Research. In 2021 she was awarded the ERC-Staring Grant. Stavrinidou is recipient of the L’ORÉAL-UNESCO For Women in Science prize in Sweden (2019) and the Tage Erlander Prize for Natural Sciences and Technology from the Royal Swedish Academy of Sciences (2023).  Her research interests focus on plant bioelectronics for real time monitoring and dynamic control of plant physiology and plant-based biohybrid systems for energy and sensing applications.

 

What inspired you to pursue a career in your specific field of research?

“I am fascinated by the potential of interfacing technological systems with biology to solve societal problems but also for pure scientific curiosity. Biological systems are beautiful but complex and can rarely be approximated into simpler ones of fully be described with physical laws. I find very inspiring the possibility to rationally manipulate biological events with technological devices but also to be able to use biological processes for development of materials or devices and harness some of nature’s intelligence in technology.”

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“The research that led to my recognition from Materials Horizons is plant based biohybrid systems. Plants are amazing machines powered by the sun that can self-repair, sense, and adapt to their environment while having hierarchical structures and complex biochemistry. Plant based biohybrid systems aim to leverage plant processes and structures for technological applications.  We developed biohybrid plants with an electronic root system. We harnessed the biocatalytic machinery of intact plants to integrate electronic materials into their structure while the plants maintain their biological functions and continue to grow and develop. The integrated mixed ionic–electronic conductors maintained their functionality over weeks and as a proof of concept we demonstrated energy storage in the plant. “

 

You can read Eleni’s editorial and featured article here:

 

Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers

Daniela Parker, Yohann Daguerre, Gwennaël Dufil, Daniele Mantione, Eduardo Solano, Eric Cloutet, Georges Hadziioannou, Torgny Näsholm, Magnus Berggren, Eleni Pavlopoulou and Eleni Stavrinidou.

Mater. Horiz., 2021,8, 3295-3305 DOI: 10.1039/D1MH01423D

 

Materials Horizons Emerging Investigator Series: Dr Eleni Stavrinidou, Linköping University, Sweden.

Eleni Stavrinidou.

Mater. Horiz., 2021,8, 3176-3177. DOI: 10.1039/D1MH90062E

 

 

 

Tianyi Ma, Emerging Investigator 2021
RMIT, Australia

Photo of Tianyi Ma

Tianyi Ma is a Full Professor in School of Science at RMIT University, an Australian Research Council Future Fellow, Fellow of Royal Society of Chemistry (FRSC), and Clarivate’s Global Highly Cited Researcher. He is a leading scientist in renewable energy field, with pioneering work done in the areas of functional photocatalytic, electrocatalytic, thermocatalytic and piezocatalytic materials for renewable solar, mechanical, and thermal energy harvesting, storage and utilisation, carbon capture, utilisation and storage (CCUS), as well as next-generation high performance battery and supercapacitor energy storage devices. His research group aims to combine these revolutionary technologies focusing on all sectors of the renewable energy supply chain to eventually achieve the global carbon neutrality. He has secured over $15 million government and industry grants to conduct innovation work and industry directed projects. He has published over 300 refereed papers, filed 15 patents, and conducted multiple real-life demonstration projects. In recognition of his contribution and reputation, he has been awarded Horizon Prize of Royal Society of Chemistry, Australian Academy of Science Le Févre Medal, Australian Nominee for the 2023 APEC Science Prize for Innovation, Research and Education, Young Tall Poppy Science Award, and Discovery Early Career Researcher Award (DECRA).

 

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“One of my proudest research projects is the solar driven photocatalysis for hydrogen production, CO2 and N2 fixation. While previous research focus more on the powdery catalysts along with their insight reaction mechanism, now more and more attempts move to integrate the catalysts into monoliths and membranes and eventually into a realistic device, that can find more practical application in real-life deployment.”

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

“I would say it is always important to find fundamental breakthrough in science and technology, but it is also the ultimate goal to generate benefit out of science, namely, to translate the knowledge into true impact in the forms of prototypes, demonstrations, and even pilot plants. By doing this, scientists should seek for not only research collaborators but also industry partners to gather the expertise and experience from different parties and achieve something big.”

 

You can read Tianyi’s editorial and featured article here:

 

In situ identification of the electrocatalytic water oxidation behaviour of a nickel-based metal–organic framework nanoarray

Fanpeng Cheng, Zhongjian Li, Lin Wang, Bin Yang, Jianguo Lu, Lecheng Lei, Tianyi Ma and Yang Hou.

Mater. Horiz., 2021,8, 556-564 DOI: 10.1039/D0MH01757D

 

Materials Horizons Emerging Investigator Series: Tianyi Ma, Swinburne University of Technology, Australia.

Tianyi Ma.

Mater. Horiz., 2021,8, 298-299 DOI: 10.1039/D1MH90007B

 

 

 

Chengyi Hou, Emerging Investigator 2021
Donghua University, China

Photo of Chengyi Hou

Chengyi Hou, a professor at Donghua University, is engaged in the development of innovative methods and experimental approaches to address the key scientific and technical challenges related to scalable synthesis, processing and assembly of smart fibres and fabrics. The novel fibre/fabric materials realize sensory and actuatory tasks like health monitoring, personal thermal management, and human-machine interaction. Their potentialities in next-generation clothing have also been explored. Chengyi Hou edited one book on smart clothing, and published over 100 peer-review journal articles on smart fibres and wearable materials, with several publications on Science, Science Advances, Nature Communications, Advanced Materials, Materials Horizons, amongst others.

What inspired you to pursue a career in your specific field of research?

“The rise of wearables. From socialization to personal health management, wearable digital devices are changing the way we experience our everyday lives. Along with everyone else I witnessed the impact of wearables in fashion, healthcare, entertainment, and many other industries. It encouraged me to keep involving in this specific field since the beginning of my career. However, there’s no guarantee that people will continue wearing digital devices over time because of barriers existing between wearables and wear. Currently, we are focusing on smart fibers, also known as fiber electronics, because it has obvious advantages in comfortability, weaveability, and wearability over bulk or thin-film devices. So, our next goal is to make wearables more wear-able.”

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“Try to imagine what will happen when all functions of a smartphone are integrated into a single fiber. Such a smart fiber represents the ultimate version of digital devices, and will revolutionize the way people live, work, and communicate. So, fiber electronics with either one or multiple digital functions including sensing, powering, displaying, and communication is extremely promising. I am also excited about the possible future of smart clothing. As our second skin, the new clothes based on smart fibers will become an intelligent interface between human and nature.”

 

 

You can read some of Chengyi’s featured articles here:

 

Scalable fluid-spinning nanowire-based inorganic semiconductor yarns for electrochromic actuators

Linpeng Li, Kun Wang, Hongwei Fan, Xiangyu Zhu, Jiuke Mu, Hao Yu, Qinghong Zhang, Yaogang Li, Chengyi Hou and Hongzhi Wang.

Mater. Horiz., 2021,8, 1711-1721 DOI: 10.1039/D1MH00135C

 

Scalable multi-dimensional topological deformation actuators for active object identification

Tianyi Ji, Wei Gong, Jie Zhou, Yangmin Jing, Ruizhe Xing, Bingjie Zhu, Kerui Li, Chengyi Hou, Qinghong Zhang, Yaogang Li and Hongzhi Wang.

Mater. Horiz., 2023,10, 1726-1736 DOI: 10.1039/D2MH01567F

 

 

 

We hope you enjoy reading these interviews from our Emerging Investigators. You can find all our past Emerging investigator editorials and featured articles here:

 

Emerging Investigators 2020/2021

Emerging Investigators 2022/2023

 

 

This is only part two of September’s community spotlight. Don’t forget to check out part one here:

 

Materials Horizons 10th Anniversary’ Community Spotlight’ – Meet our Emerging Investigators Part 1

 

Or to read more of our community spotlight blog, return to the home page here

 

Coming up next month in our Community Spotlight are our Outstanding Reviewers.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons 10th Anniversary ‘Community Spotlight’ – Meet our Emerging Investigators Part 1

Introducing Materials Horizons’ Emerging Investigators 2020/2021 – Part 1.

This year we are pleased to celebrate the tenth anniversary of Materials Horizons. We are so grateful to our fantastic community of authors, reviewers, Board members and readers and wanted to showcase just some of them in a series of ‘Community Spotlight’ blog articles.

In our second ‘Community Spotlight’, we feature some of our past ‘Emerging Investigators’ who have contributed their outstanding research to Materials Horizons.

Our Emerging Investigators series highlights early career scientists who have excelled in their field and work to provide quality research and communications in order to contribute to the constant evolution of chemical sciences. We asked some of our past Emerging Investigators about their experience as up-and-coming researchers and how their work has developed from early career stage to now. Check out their interview responses below.

 

 

Ignasi Fina, Emerging Investigator 2020
Institute of Materials Science of Barcelona, Spain

Photo of Ignasi Fina

Dr. Ignasi Fina works as tenured scientist at the Institute of Materials Science of Barcelona belonging to Spanish National Research Council. He is focused on the study of new ferroelectric materials for non-volatile applications. Ignasi Fina did his PhD in Barcelona, before working as Beatriu de Pinós fellow in Max Planck Institute of Microstructure Physics (Germany). He was also awarded with Juan de la Cierva and Ramon y Cajal fellows. He has coauthored over 120 publications, being corresponding author in nearly half of them.

What inspired you to pursue a career in your specific field of research?

“In the area of research of materials for electronics, as in any other field of research, there are many questions to be answered. The most important thing is to do is focus on the right questions and be sure that you have the right tools to answer them in the best possible manner. The electronics industry is demanding more and more new materials; able to perform better and with novel functional properties. The number of potentially interesting new materials for the electronics industry is huge.

The bottle-necks and the large number of open questions faced by the electronic industry and the fact that I have the right tools to help solve some of them, motivated me to study high quality materials in thin film form, focusing mainly on ferroelectric materials.”

How would you summarise the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“I work with outstanding quality materials thanks to the work of my colleagues and the developing techniques that we use. These outstanding quality materials are difficult to be directly integrated in commercial devices due to their very demanding fabrication. However, high quality materials are excellent platform to help the understanding of intrinsic properties of materials. This understanding is fundamental for the design of devices showing better performance. My work on the characterization of these outstanding quality materials has allowed me to have a great impact on the field.”

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“Since becoming an Emerging Investigator, I reinforced my research lines, while collaborating in fruitful projects lead by other excellent scientists. I am very happy how my career has evolved after being highlighted as Emerging Investigator.”

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“Few years ago, I started to see works reporting on ferroelectric hafnia. These results were mainly reported by people from Namlab in Germany. I thought at that time that the material was very promising. I thought that the ferroelectric properties were excellent, plus the important fact that the material was fully CMOS compatible. However, the mechanisms that determined the ferroelectric performance of the material were not completely accurate or reliable. Indeed, this issue is still not solved. I find exciting to work on the fundamental understanding of this material, which is extremely relevant to solve the bottlenecks that the material is facing in order to be implemented in commercial devices. I am also very excited by the fact that ferroelectric hafnia is one of the few examples where you have a lot of transversal work in parallel: from theory or fundamental understanding of the material (as me) to integration in commercial devices by many companies and start-ups. Thus, I think that ferroelectric hafnia is a promising material for new generation of energy efficient memory applications capable to be integrated in novel computing architectures and thus of the highest interest.”

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

“The important thing is to work and to think. Both are important. On one hand, you can have excellent ideas, but if you do not have the skills and you do not dedicate time to implement them at a minimum level, it is very unlikely that you will make your ideas understandable by the other scientists and therefore their potential impact can be severely affected. On the other hand, you can work a lot, but if you do not have in your mind clear questions to be answered, you and your colleagues time-investments can be useless. In addition, I also want to emphasize that you must be extremely rigorous and honest. Successful careers are made of a long list of results that others can reproduce and eventually to integrate on applications, or at least this is what I want to think.”

What are some of the main challenges or obstacles you have encountered while conducting your research, and how have you overcome them?

“I am very lucky. I have been working with excellent people. Maybe, this is one of the most positive aspects of my career. My collaborators are excellent scientists in addition of easy-going people. This is an important aspect of the role, science is mainly based on people, not on instruments, or materials, so it is very important to select the right people to work with. Dark side of my career is the bureaucracy. I am not an against bureaucracy. I fully understand that big portion of the research that I am doing is thanks to public funding, including my salary, and we must be extremely transparent and rigorous with all the actions that we take and the money that we invest. However, I find myself dedicating 1 or 2 hours per day to fill paperwork or to reply to people from administration, who, by the way, do an excellent work and I want to thank them for this. I would try to go for longer projects, with even more evaluation stages, and a much more rigorous evaluation of the scientific output. I think that institutions should also trust in the honesty of scientists. This would help a lot on reducing bureaucracy.”

 

You can read Ignasi’s featured articles here:

 

Local manipulation of metamagnetism by strain nanopatterning

Michael Foerster, Enric Menéndez, Emerson Coy, Alberto Quintana, Carles Gómez-Olivella, Daniel Esqué de los Ojos, Oriol Vallcorba, Carlos Frontera, Lucia Aballe, Josep Nogués, Jordi Sort and Ignasi Fina.

Mater. Horiz., 2020,7, 2056-2062 DOI: 10.1039/D0MH00601G

 

Control of up-to-down/down-to-up light-induced ferroelectric polarization reversal

Huan Tan, Gustavo Castro, Jike Lyu, Pablo Loza-Alvarez, Florencio Sánchez, Josep Fontcuberta and Ignasi Fina.

Mater. Horiz., 2022,9, 2345-2352 DOI: 10.1039/D2MH00644H

 

 

 

Jun Zhang, Emerging Investigator 2020
Qingdao University, China

Photo of Jun Zhang

Jun Zhang is currently a full professor at the College of Physics, Qingdao University. He received his PhD from Nankai University in 2011. After graduation, he started his career at the University of Jinan, where he worked from 2011–2014. Prior to joining Qingdao University in 2016, he worked with Prof. Nicola Pinna at Humboldt University, Berlin, in 2014–2015. He was selected as Materials Horizons- Emerging Investigator in 2020 and awarded highly cited author 2021 of RSC. Current research in his group is focused on the elaboration of nanostructured materials for applications in gas sensors and energy devices. He has published over 130 scientific papers in peer-review journals with over 10000 citations and H-index of 60. He has delivered over 20 invited talks in academic conferences.

 

What inspired you to pursue a career in your specific field of research?

“I would say my footsteps in my current research in nanomaterials and sensors were derived from my interest in chemistry. I have been getting quite good scores in Chemistry since middle school. It is amazing that you can create new materials and beautiful structures by chemical reactions, the process of which is quite magic and artistical. When I started pursing my postgraduate degree, I decided to follow my interest in chemistry to make new materials and structures and use them to fabricate gas sensors. To me, the sensory process is another field full of curiosity. The unseen interactions between gasses molecules and materials surface lead to visible changes in electrical signals. At the same time, I note the sensors are very ubiquitous and useful in our daily life. Although there are still many challenges, I would not stop my steps in this field.”

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“I would like to truly thank the editors of Materials Horizons for having considered me as a candidate for an Emerging Investigator. This further strengthens our confidence in the sensor research. It also helps build our credit in this field. In the past two years, we have received several invitations by RSC journals like Mater Horizon, Chem Comm, Chem Soc Rev and Sensor Diagnosis to submit our new works. I believe it is the quality of our works that lead to the invitations for submission. I also received a certificate as a RSC-Highly Cited Author. Looking back, since my first paper published in JMC in 2010, I have published over 15 papers in RSC journals. I would thank RSC for having contributed to the development of my career. I am more than happy that our works are read and recognized by the community.”

 

You can read Jun’s featured article here:

 

Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection

Yongshan Xu, Wei Zheng, Xianghong Liu, Liqiang Zhang, Lingli Zheng, Chen Yang, Nicola Pinna and Jun Zhang.

Mater. Horiz., 2020,7, 1519-1527 DOI: 10.1039/D0MH00495B

 

 

 

Zhengyang Bin, Emerging Investigator 2021
Sichuan University, China.

Photo of Zhengyang BinZhengyang Bin is a professor at College of Chemistry in Sichuan University. He received his PhD from Tsinghua University in 2018, under the supervision of Prof. Yong Qiu and Prof. Lian Duan. His current research focuses on OLED materials and devices.

What inspired you to pursue a career in your specific field of research?

“My research focuses on OLED materials and devices, driven by two key factors. Firstly, the exciting and innovative nature of OLED technology offers numerous potential benefits, making it a promising field for further exploration and advancement. Secondly, my PhD advisers’ personal charm and mentorship have inspired me to pursue this career with great passion and dedication.”

How would you summarize the research which lead to your recognition as an Emerging Investigator for Materials Horizons?

“In our Emerging Investigator Series article ‘A methyl-shield strategy enables efficient blue thermally activated delayed fluorescence hosts for high-performance fluorescent OLEDs’ (DOI:10.1039/D1MH00530H), a novel strategy of incorporating a methyl-shield into TADF hosts in TSF-OLEDs achieved, for the first time ever, an extremely high efficiency of 32.3% for these OLEDs.”

Since becoming an Emerging Investigator, how do you feel your research has developed over time?

“This recognition leads to increased visibility and opportunities for collaboration, funding, and further research growth.”

What are some of the current trends or emerging areas of research within your field that you find particularly exciting or promising?

“One of the exciting and promising emerging areas of research in OLED is the development of narrowband OLED emitters. By improving colour purity and efficiency compared to traditional broad-spectrum OLEDs, narrowband OLEDs have the potential to revolutionize high-quality displays for medical imaging or other colour-critical applications, as well as lighting for horticulture and agricultural purposes. This groundbreaking innovation represents a significant step forward in advancing OLED technology and its various benefits.”

What advice would you give to aspiring scientists who hope to make a significant impact in their respective fields?

“Pursuing your passions, remaining open-minded, staying up to date with the latest research, collaborating with others and persevering through failure.”

What are some of the main challenges or obstacles you have encountered while conducting your research, and how have you overcome them?

“Creating unique and representative works in the field can be a challenging yet crucial task. To overcome this obstacle, I dedicated significant effort to reading numerous papers and experimenting with different approaches. Through dedicated effort, my team and I have formulated a novel “medium-ring” strategy for the development of structurally unconventional OLED materials. This approach holds much potential for the further development of OLED materials and assembly of high-performance OLED devices.”

 

You can read some of Zhengyang Bin’s featured articles here:

 

A methyl-shield strategy enables efficient blue thermally activated delayed fluorescence hosts for high-performance fluorescent OLEDs.

You Ran, Ge Yang, Yang Liu, Weiguo Han, Ge Gao, Rongchuan Su, Zhengyang Bin and Jingsong You.

Mater. Horiz., 2021,8, 2025-2031 DOI: 10.1039/D1MH00530H

 

Dipole moment engineering enables universal B–N-embedded bipolar hosts for OLEDs: an old dog learns a new trick.

Shuang He, Junjie Liu, Ge Yang,  Zhengyang Bin and Jingsong You.

Mater. Horiz., 2022,9, 2818-2823. DOI: 10.1039/D2MH00856D

 

Geometry engineering of a multiple resonance core via a phenyl-embedded strategy toward highly efficient narrowband blue OLEDs

Yimin Wu, Xiaoyu Liu, Junjie Liu, Ge Yang, Songyan Han, Dezhi Yang, Xiaosong Cao, Dongge Ma, Zhengyang Bin and Jingsong You.

Mater. Horiz., 2023, Advance Article. DOI: 10.1039/D3MH00617D

 

 

 

We hope you have enjoyed reading these interviews from our Emerging Investigators. You can find all our past Emerging investigator editorials and featured articles here:

 

Emerging Investigators 2020/2021

Emerging Investigators 2022/2023

 

 

 

This is only part one of September’s community spotlight. Don’t forget to check out part two here:

 

Materials Horizons 10th Anniversary ‘Community Spotlight’ – Meet our Emerging Investigators Part 2

 

Or to read more of our community spotlight blog, return to the home page here

 

Coming up next month in our Community Spotlight are our Outstanding Reviewers.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)