Archive for June, 2024

Discover our 2024 Materials Horizons Emerging Investigators

Materials Horizons Emerging Investigator series

Discover our 2024 Emerging Investigators

Since the launch of Materials Horizons, the journal has had a clear vision to publish exceptionally high-quality work whilst acting as a resource to researchers working at all career levels. We continue to be impressed by the quality of the research published and at the same time are looking for new ways of recognising and promoting the outstanding authors behind articles published in the journal.

The Materials Horizons Emerging Investigators Series showcases early-career researchers who have published exceptional work in the journal. The initiative started in 2020 and so far we have featured over 40 up-and-coming researchers in the series. For each issue of the journal, the Editorial Office and Editorial Board select an Emerging Investigator from a pool of eligible authors, highlighting the researcher and their recently published work in an interview Editorial.

Discover our 2024 Materials Horizons Emerging Investigators so far and read their publications below:

 

Dr Jie Xu

Argonne National Laboratory, USA

Read the Editorial

Read the Emerging Investigator article, ‘Real-time correlation of crystallization and segmental order in conjugated polymers’ (https://doi.org/10.1039/D3MH00956D

 

 

Professor Dr Wee-Jun Ong

Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University, Malaysia

Read the Editorial

Read the Emerging Investigator article, ‘Isotype heterojunction: tuning the heptazine/triazine phase of crystalline nitrogen-rich C3N5towards multifunctional photocatalytic applications’ (https://doi.org/10.1039/D3MH01115A)

 

Professor Dr Hai-Bo Zhao

National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University

Read the Editorial

Read the Emerging Investigator article, ‘Controllable proton-reservoir ordered gel towards reversible switching and reliable electromagnetic interference shielding’ (https://doi.org/10.1039/D3MH01795H)

 

 

Associate Professor Dr Xuhui Zhang

Jiangnan University, China

Read the Editorial

Read the Emerging Investigator article, ‘Soft–hard dual nanophases: a facile strategy for polymer strengthening and toughening’ (https://doi.org/10.1039/D3MH01763J

 

Professor Zhengbao Yang

Hong Kong University of Science and Technology, Hong Kong

Read the Editorial

Read the Emerging Investigator article, ‘Exploring the Mpemba effect: a universal ice pressing enables porous ceramics’ (https://doi.org/10.1039/D3MH01869E)

 

Professor Yiyang Li

University of Michigan, USA

Read the Editorial

Read the Emerging Investigator article, ‘Oxygen tracer diffusion in amorphous hafnia films for resistive memory’ (https://doi.org/10.1039/d3mh02113k)

 

 

Professor Jingjing Duan

Nanjing University of Science and Technology, China

Read the Editorial

Read the Emerging Investigator article, ‘Unlock flow-type reversible aqueous Zn–CO2batteries’ (https://doi.org/10.1039/D4MH00219A

 

 

Professor Francesca Santoro

Forschungszentrum Jülich and RWTH Aachen, Germany

Read the Editorial

Read the Emerging Investigator article, ‘An organic brain-inspired platform with neurotransmitter closed-loop control, actuation and reinforcement learning’ (https://doi.org/10.1039/D3MH02202A)

 

Dr Sahnawaz Ahmed

National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India

Read the Editorial

Read the Emerging Investigator article,‘Chemically fueled dynamic switching between assembly-encoded emissions’ (https://doi.org/10.1039/D4MH00251B)

 

Professor Edison Huixiang Ang

National Institute of Education/Nanyang Technological University, Singapore

Read the Editorial

Read the Emerging Investigator article, ‘Construction of phase-separated Co/MnO synergistic catalysts and integration onto sponge for rapid removal of multiple contaminants’ (https://doi.org/10.1039/D4MH00285G)

We  would like to congratulate all our 2024 Emerging Investigators so far for being selected to feature. We hope that you enjoy reading their impactful publications and finding out more about them in their Editorial interviews. Keep an eye out for our next Emerging Investigators through 2024

Are you an independent researcher within 10 years of your PhD or within 5 years of your independent career? Submit your best research to Materials Horizons to be considered to feature in one of our next issues!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Discover our 2023 Materials Horizons Emerging Investigators

Materials Horizons Emerging Investigator Series

Discover our 2023 Emerging Investigators

Since the launch of Materials Horizons, the journal has had a clear vision to publish exceptionally high-quality work whilst acting as a resource to researchers working at all career levels. We continue to be impressed by the quality of the research published and at the same time are looking for new ways of recognising and promoting the outstanding authors behind articles published in the journal.

The Materials Horizons Emerging Investigators Series showcases early-career researchers who have published exceptional work in the journal. The initiative started in 2020 and so far we have featured over 40 up-and-coming researchers in the series. For each issue of the journal, the Editorial Office and Editorial Board select an Emerging Investigator from a pool of eligible authors, highlighting the researcher and their recently published work in an interview Editorial.

 

Discover our 2023 Materials Horizons Emerging Investigators and read their publications below:

 

Dr Wei Zhai

National University of Singapore, Singapore

Read the Editorial

Read the Emerging Investigator article, ‘Multifunctional sound-absorbing and mechanical metamaterials via a decoupled mechanism design approach’ (https://doi.org/10.1039/D2MH00977C

 

Dr Yandong Ma

Shandong University, China

Read the Editorial

Read the Emerging Investigator article, ‘Layer-polarized anomalous Hall effects in valleytronic van der Waals bilayers’ (https://doi.org/10.1039/D2MH00906D

 

 

 

Dr Yue (Jessica) Wang

University of California, Merced, USA

Read the Editorial

Read the Emerging Investigator article,  ‘Oligoaniline-assisted self-assembly of polyaniline crystals’ (https://doi.org/10.1039/D2MH01344D

 

Dr Dominik J. Kubicki

University of Warwick, UK

Read the Editorial

Read the Emerging Investigator article, ‘MOF/polymer hybrids through in situ free radical polymerization in metal-organic frameworks’ (https://doi.org/10.1039/D2MH01202B

 

Dr Megan Fieser

University of Southern California, USA

Read the Editorial

Read the Emerging Investigator article, ‘Controlling selectivity for dechlorination of poly(vinyl chloride) with (xantphos)RhCl’ (https://doi.org/10.1039/D2MH01293F

 

Professor Derek Ho

City University of Hong Kong, China

Read the Editorial

Read the Emerging Investigator article, ‘Order–disorder engineering of RuO2nanosheets towards pH-universal oxygen evolution’ (https://doi.org/10.1039/D3MH00339F)

 

Dr Jess M. Clough

Adolphe Merkle Institute, University of Fribourg, Switzerland

Read the Editorial

Read the Emerging Investigator article, ‘Microscopic strain mapping in polymers equipped with non-covalent mechanochromic motifs’ (https://doi.org/10.1039/D3MH00650F)

 

Dr Kevin Golovin

University of Toronto, Canada

Read the Editorial

Read the Emerging Investigator article, ‘Surface-engineered double-layered fabrics for continuous, passive fluid transport’ (https://doi.org/10.1039/D3MH00634D)

 

Dr Shanshan Yao

Stony Brook University, USA

Read the Editorial

Read the Emerging Investigator article, ‘Decoding silent speech commands from articulatory movements through soft magnetic skin and machine learning’ (https://doi.org/10.1039/D3MH01062G)

We  would like to congratulate all our 2023 Emerging Investigators for being selected to feature. We hope that you enjoy reading their impactful publications and finding out more about them in their Editorial interviews.

Are you an independent researcher within 10 years of your PhD or within 5 years of your independent career? Submit your best research to Materials Horizons to be considered to feature in one of our next issues!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A pathway from nanoscale templates to magnetic assembly of plasmonic chiral nanoparticles: the future of chiral superstructures in nanotechnology

The synthesis and control of the performance of chiral superstructures are intriguing because they bring us closer to the magical concept of chirality, exemplified by the dichotomy between our hands. In the long run, scientists aim to control the chirality of matter, particularly molecules. The enduring challenge is to overcome the mismatch between the molecular work function and magnetic quadrupole transitions and/or the wavelength of light. “Due to this size mismatch, the molecule sees uniform electric and magnetic fields, just as we see the Earth as locally flat,” said Prof. Adam E. Cohen in one of his pioneering reviews on chirality (Nano Today (2009) 4, 269—279). The design of chiral superstructures allows us to sculpt the three-dimensional shape of the electromagnetic field at the size scale of an individual molecule. The most rapidly developing strategy to prepare these nanostructures involves using diverse nanoscale templates, such as origami techniques or lithography. However, the preparation of such nanostructures is very challenging, which slows down the field’s development. Another significant limitation is the inability to dynamically control the handedness and spectral characteristics.

Recent work by Chaolumen Wu and Yadong Yin suggests a magnetic assembly strategy to overcome these limitations. They prepared Ag@Fe3O4 nanoparticles through a relatively simple procedure and further assembled them by introducing a chiral magnetic field from a cubic permanent magnet. This magnet was placed beside the Ag@Fe3O4 suspension and was controlled by two parameters: rotation angle and distance to the suspension (shorter separation distance results in a stronger field strength). The formed assemblies are chains of nanoparticles oriented in a chiral structure. The main advantage of the suggested strategy is the very smoothly controlled dynamicity of the system: spectral position, handedness, and intensity of the chiral signal can be controlled by the magnetic angle and distance relative to the sample. Previously reported approaches required time-consuming simulations and production of plasmonic substrates with those varied chiral characteristics. The authors could fix the chiral superstructures in polymer films with precise control of the handedness, position of optical absorption, and degree of plasmonic coupling. The dynamic optical rotation enables the authors to demonstrate distinguishable color switching. Without the magnet, no color is observed; however, variation of magnet positions gives a wide palette from purple to pink, and from yellow to blue. Therefore, the authors mainly envision the application of this tunability for color-changing optical devices used in anti-counterfeiting and stress sensors.

Figure 1: (a) Simulation of the chiral field distribution from a cubic permanent magnet and schematic illustration of the chirality transfer from a chiral magnetic field to magnetic nanoparticle assembly. (b) TEM image of Ag@Fe3O4 hybrid nanoparticles. (c) Schematic illustration of the setup for measuring the extinction and CD spectrum of particle dispersion under a chiral magnetic field. (d)–(f) Extinction (d), CD (e), and the corresponding g-factor (f) spectra of the Ag@Fe3O4 nanoparticle dispersion without a magnetic field or under a field along the X- and Z-axes. Reproduced from DOI: 10.1039/D3MH01597A with permission from the Royal Society of Chemistry

However, the author of this blog highlights alternative applications. Controlling chiroptical properties is a direct way to enable enantioselective sensing and catalysis by transferring chirality to small molecules. While the application of a chiral quadrupole magnetic field induces the assembly of Ag@Fe3O4, simultaneous irradiation of these structures with a wavelength corresponding to the maximum absorption, due to the presence of Ag, could enhance interactions with small molecules. Photocatalytic reactions performed under a magnetic field, which couple magnetic and light fields, are a novel concept. Although magnetic field-enhanced photocatalysis is relatively new and has mostly been applied to dye degradation, controlling chiral photochemistry with a magnetic field would significantly advance interactions with chiral molecules. In this scenario, applied magnetic fields to Ag@Fe3O4 could serve a dual role of (i) chirality induction and (ii) plasmonic carrier generation and prolongation of the lifetime of excited plasmons.

Research on chirality remains niche due to the complex preparation techniques of chiral superstructures. The published research opens new possibilities for more scientific groups to work in this direction, thanks to the simplicity of using cubic permanent magnets. However, measurement techniques, such as optical rotation density measurement setups, may still pose challenges for the wider community. Increased availability of these techniques should spur more investigations into various applications of chiral nanostructures, including color displays, anti-counterfeiting measures, and chiral sensing and catalysis.

To find out more, please read:

Magnetic assembly of plasmonic chiral superstructures with dynamic chiroptical responses
Chaolumen Wu, Qingsong Fan, Zhiwei Li, Zuyang Yea and Yadong Yin
Mater. Horiz., 2024,11, 680-687, DOI: 10.1039/D3MH01597A

 


About the blogger


 

Dr Olga Guselnikova is a member of the Materials Horizons Community Board. She recently joined the Center for Electrochemistry and Surface Technology (Austria) to work on functional materials as a group leader. Dr. Guselnikova received her PhD degree in chemistry from the University of Chemistry and Technology Prague (Czech Republic) and Tomsk Polytechnic University (Russia) in 2019. Her research interests are related to surface chemistry for functional materials. This means that she is applying her background in organic chemistry to materials science: plasmonic and polymer surfaces are hybridized with organic molecules to create high-performance elements and devices.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons 10th anniversary Regional Spotlights

Materials Horizons 10th anniversary Regional Spotlights

Showcasing a selection of most popular articles from regions across the world

As part of our 10th anniversary celebrations of Materials Horizons, we have collated a series of Regional Spotlight collections to showcase some of our most popular articles from some of our key regions across the world. We are pleased to share with you our collections spotlighting a selection of most popular articles published over the last decade in Materials Horizons by corresponding authors based in five key regions: Europe, America, China, Asia-Pacific and, Africa and the Middle East.

We invite you to browse the collections to discover just some of the excellent research that has been published in Materials Horizons over the past decade. Click the buttons below to explore the collections.

 

We hope that you have enjoyed browsing the exciting research in our special anniversary Regional Spotlight collections. We are honoured to have published outstanding research from our global community over the last decade and look forward to many more years showcasing materials science from our authors based all over the world!

We would be delighted to receive your future work to Materials Horizons. Check out the scope and requirements on our platform and submit your next work now!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)