Archive for the ‘Emerging Investigators’ Category

2023 MSDE Outstanding Early-Career award Winners: Hyungwoo Kim & Won Seok Chi

It is with our great pleasure to announce Prof. Hyungwoo Kim & Prof. Won Seok Chi (Chonnam National University, Korea) as the joint winners of the 2023 Molecular Systems Design & Engineering Outstanding Early-Career Paper Award.

This is in recognition of her leadership of the paper, ‘Tailoring 6FDA-based click cross-linked membranes: modular synthesis and tunable gas separation’, DOI: 10.1039/D2ME00215A

Check out this bespoke infographic summarising the paper;

About the winners:

 

Hyungwoo Kim is a professor of polymer science and engineering at Chonnam National University. His expertise lies in polymer synthesis, with research interests spanning molecular design of functional polymers with autonomous responses, sustainable polymeric materials, and microstructure control in polymers. Prior to his appointment at Chonnam National University in 2017, he earned his BS and PhD degrees from Seoul National University and conducted postdoctoral research at Pennsylvania State University.

 

Won Seok Chi is an associate professor in the School of Polymer Science and Engineering at Chonnam National University. He received BS and PhD degrees in the Department of Chemical and Biomolecular Engineering at Yonsei University. He was a postdoctoral associate in the Department of Chemical Engineering at the Massachusetts Institute of Technology. His research interest includes the rational design and synthesis of functional polymers and porous materials and membrane fabrication for efficient molecular and ion transport in energy and environmental applications.

 

Check out our interview with Professor’s Kim & Chi below:

Can you briefly summarise your paper?

This paper describes rationally designed click-crosslinked 6FDA-DAM:DABA membranes using a thiol-ene cross-linking method for tunable molecular separation performance. The systematically controlled thiol cross-linkers were introduced to engineer the d-spacing and fractional free volume of click-crosslinked polymer membranes. As a result, the gas transport properties of the modular engineered click-crosslinked membranes were finely controlled depending on the thiol cross-linker. Moreover, the click-crosslinked membranes showed enhanced plasticization resistance depending on the crosslinker chain length or cross-linkable site numbers.

What aspect of your work are you most excited about at the moment?

Chi – My work focuses on functional polymer membranes and metal-organic framework (MOF) mixed-matrix membranes (MMMs) for gas separation. In particular, the rational design of the functional polymer membranes and the engineered MOF-polymer interface of the MMM can achieve significantly enhanced gas transport properties. In addition, the increased polymer chain rigidity of the polymer-based membranes can suppress the plasticization phenomenon, which is a critical issue of membrane-based separation in the industrial field.

Kim – I am conducting research on designing functional polymer materials in the field of polymer synthesis. It is very rewarding to see polymers specifically designed at the molecular level functioning as a useful material.

Where do you see the field of cross-linked membranes in five years’ time?

The cross-linking approach for polymer membranes can engineer the d-spacing of polymer membranes and reduce the polymer chain mobility. The fine-tuning of the fractional free volume of polymer membranes can be achieved showing their tunable gas transport properties. In addition, the cross-linked polymer membranes can suppress the plasticization behavior, which results in the polymer chain relaxation at highly soluble gas feed pressure, by forming a rigid polymer network from the cross-linking.

How do you feel about Molecular Systems Design & Engineering as a place to publish research on this topic?

MSDE focuses on the research work on the molecular engineering of the chemical structure of polymer materials and their corresponding transport properties. This work provides a deep understanding of the principle structure-to-transport relationship, thereby achieving a highly efficient and stable gas separation performance for industrial applications.

How do you like to spend your time when not doing research?

Chi – I enjoy taking a walk and watching a movie. Sometimes, I also enjoy traveling to rural places and abroad and hiking national parks.

Kim – I love spending time with my family. We like cooking and traveling together. Also, I like listening to all kinds of music and visiting art museums

Can you share one piece of career-related advice for those beginning their research career?

Chi – Provide abundant assistance and support for collaborators, and then it will fulfill your research as well. This work was also performed by the collaboration.

Kim – I agree to the Chi’s comment. Sometimes research can be tedious but together you can go further. 

Read the paper for FREE until 29th Arpil 2024!

Tailoring 6FDA-based click cross-linked membranes: modular synthesis and tunable gas separation

Jieun Park, Chang Oh Lee, Ki Jung Kim, Won Seok Chi* & Hyungwoo Kim*

Mol. Syst. Des. Eng., 2023, 8, 32-38, DOI: 10.1039/D2ME00215A

About the award

The aim of the Molecular Systems Design & Engineering Outstanding Early-Career Paper Award is to recognise a researcher in the earlier stages of their research career for their leadership in reporting original research published in the journal.

The journal Editorial Board award this prize annually, selecting the paper which they find to demonstrate the highest quality of research, as well as importance to the advancement of the field of molecular engineering, out of all qualifying papers published in the journal each year.

 

Eligibility

In order to be eligible for this award, the candidate must:

  • Be listed as a corresponding author on the paper
  • Currently be an independent research leader
  • Have either a) received their PhD on or after 1st January of the year 12 years prior to the award year (2012 for prize year 2024) or b) spent no more than an equivalent amount of time in research when taking into account any career breaks.
  • Have a paper featured in the journal’s Emerging Investigator Series – further information about eligibility for the Emerging Investigator Series can be found here. The Editorial Office will consider applications to the Series on their own merit; please contact us if you are interested in being considered for the series or nominating an exceptional early-career colleague.
  • Not be a previous winner of this award

 

Selection Process

To choose the winner of the 2023 Molecular Systems Design & Engineering Outstanding Early-Career Paper Award, a shortlist of eligible articles that were published throughout the year were selected by the editorial office and then subsequently assessed by the journal’s Editorial Board. The winner was selected based upon the significance, impact and quality of the research.

 

Prize

The winner of the Molecular Systems Design & Engineering Outstanding Early-Career Paper Award will receive an engraved plaque, a bespoke infographic from Impact Science for the winning paper and £500 cash award that would be used for conference travel/attendance of their choice.

To have your paper considered for the 2024 Molecular Systems Design & Engineering Outstanding Early-Career Paper Award, indicate when prompted upon submission of your revised manuscript if a corresponding author of the paper fulfils the criteria to feature in the Emerging Investigator Series. If accepted, your paper will be added to the ongoing collection and will be considered for the award. Multiple eligible authors of a winning paper will share the prize fund equally. You can contact the editors at molecularengineering-rsc@rsc.org if you have any queries.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSDE Emerging Investigator – Wenjie Xia

Dr. Wenjie Xia is currently an Associate Professor in the Department of Aerospace Engineering at Iowa State University. He received his PhD in Civil and Environmental Engineering from Northwestern University in 2016. His research interests lie in modeling and computational design of polymers, soft matter, and multifunctional behaviors of complex materials. He has authored over 80 peer-reviewed papers published in prestigious journals in polymer science, multiscale modeling, and computational materials, including Advanced Materials, Science Advances, Matter, ACS Nano, Nano Letters, etc. He has been recognized by multiple awards, including NSF CAREER Award, ACS PMSE Young Investigator Award, ND-ACES Early Career Faculty Award, RSC MSDE Emerging Investigator, and NIST MML Accolade for Technical Excellence “for leading the development of a new multiscale modeling approach for glass-forming polymer materials”.

Read Wenjie’s Emerging Investigator manuscript: Molecular insights into the hydration of zwitterionic polymers, DOI:10.1039/D3ME00020F

This will be free to read until September 20th! Read the interview with Wenjie below;

1. How do you feel about MSDE as a place to publish research on this topic?

MSDE presents an ideal platform to showcase our group research on modeling and computational design of molecules and polymers. With its reputation for upholding rigorous peer-review standards, MSDE provides a credible avenue to disseminate our research and contribute to the advancements in our field.

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I am thrilled by the potential that emerging and advanced computational techniques, such as multiscale modeling and AI, hold for predicting and designing complex molecular systems at a fundamental level. The most challenging aspect of my research lies in establishing an effective strategy to overcome the spatiotemporal limitations of molecular modeling to achieve improved predictions at extended and multiple scales in a computationally efficient manner.

3. In your opinion, what are the most important questions to be asked/answered in this field of research?

In design and engineering of complex molecular systems, such as zwitterionic polymers, the most important question to be answered is how to delineate their “structure-processing-property” relationships of those materials, which requires a fundamental understanding of their intricate intermolecular interactions and microstructures.

4. Can you share one piece of career-related advice or wisdom with other early career scientists?

From my personal experience, it is really valuable to cultivate a strong network of peers, mentors, and collaborators. Building meaningful connections within your field and even beyond really offers diverse perspectives, valuable guidance and tremendous opportunities for research collaboration.

Follow Wenjie on Twitter; @WenJXia

You can also find Wenjie on Linkedin: https://www.linkedin.com/in/wenjie-xia/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSDE Emerging Investigator – Shafigh Mehraeen

Dr. Mehraeen is an Assistant Professor in the Department of Chemical Engineering at the University of Illinois at Chicago (UIC). He received his B.S. from University of Tehran, and M.S. and Ph.D. in Mechanical Engineering from Stanford University. He joined UIC in 2016 after postdoctoral work in the Department of Chemistry at Georgia Institute of Technology and MIT. Professor Mehraeen’s specialty is charge transport in organic photovoltaic (OPV) solar cells, and directed self-assembly of sub-10 nm particles on patterned surfaces. The emphasis of OPVs research thrust is on understanding of the charge transport mechanisms, and the fundamental relationships between morphology of the active materials and bimolecular recombination losses. The focus of directed self-assembly of sub-10 nm particles research thrust is on gaining control of the self-assembly process to make superlattices using flow field and substrate patterning. A new focus of his research activities is on molecular design using a combination of density functional theory, machine learning algorithms, and artificial intelligence. Overall, the objectives of his program are pursued through a combination of theoretical methods and computational simulations, enabling the attainment of a deeper understanding of the core issues of interest to better guide experimental efforts in novel materials synthesis and nanofabrication. Professor Mehraeen’s research work has been funded by NIH, and Strategic Environmental Research and Development Program. Shafigh is the recipient of MIT Ascher Shapiro Award for excellence in educational prowess in 2014, and UIC College of Engineering Teaching Award in 2018, 2019, and 2023.

Read Shafigh’s Emerging Investigator Series article: Unraveling the impact of template geometry and confinement on template-assisted self-assembly of nanoparticles. DOI:10.1039/D3ME00024A

This article will be free to access until September 15th! Read the interview with Shafigh below;

In your opinion, what are the most important questions to be asked/answered in this field of research?

The challenging task in this field is to thoroughly understand the mechanisms of Directed Self-Assembly (DSA) of Sub-50 nm Particle (abbreviated as SNP) arrays on templates at moving three-phase (solid- liquid-gas) interfaces, and utilize that understanding to investigate ways to manipulate DSA and ordering of assemblages with single particle precision (placing a single particle at every predefined position). The DSA process is a self-assembling system of discrete components, which is aided by utilizing stimuli such as external fields or templates for selective depositions. This process is currently considered as one of the main ways for nano-fabrication because of its simplicity, versatility, and spontaneity. DSA of SNP arrays onto 2D structures gives rise to novel collective properties that can be tuned by manipulating the external stimuli, interactions between SNPs, or particle size. Arrays of SNPs, such as semiconductor quantum dots, nanorods, and nanotetrapods, with such tunable properties have applications in electronics, magnetics, photonics, and catalysis. Ordered arrays of SNPs on template surfaces will also influence the fundamental nanoscale view of materials properties and the practical manifestation of bottom-up manufacturing technologies. SNPs are promising building blocks for nanotechnology due to their ease of fabrication and high degree of uniformity. However, this promise will be fulfilled only if a method to address single SNPs and their positioning in large arrays with desired arrangement on textured substrates is developed. To develop this method, a rigorous understanding of the mechanisms of DSA of SNP arrays on template surfaces is required.

Find out more about Dr Shafigh Mehraeen and their groups research on their website: https://tranzabi.people.uic.edu/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSDE Emerging Investigator – Reika Katsumata

Reika Katsumata is an assistant professor in Polymer Science and Engineering Department at UMass Amherst since 2018. After obtaining her B.E. and M.E. degrees in Organic and Polymeric Materials at the Tokyo Institute of Technology, Reika made a big move to the States, where she earned Ph.D. degree in Chemical Engineering at the University of Texas at Austin. Before joining UMass, she completed her postdoctoral training at the University of California, Santa Barbara. Katsumata Group’s overarching research goal is to design extremely confined soft/hard interfaces, focusing on dynamics, wettability, and mechanics with a novel processing method of polymer-assisted rapid thermal annealing. She has been awarded the ACS petroleum research fund Doctoral New Investigator Grant (2019), NSF CAREER Award (2021), 3M Non-Tenure Faculty Award (2022), Japan Science and Technology Agency PRESTO Award (2022), AFOSR Young Investigator Award (2023), and ACS PMSE Early Stage Investigator Award (2023).

Read Reika’s Emerging Investigator article: Recent advances and emerging opportunities in rapid thermal annealing (RTA) of polymers. DOI: 10.1039/D2ME00283C

This article will be free to access for all until September 10th 2023! Read the interview with Reika below;

  1. How do you feel about MSDE as a place to publish research on this topic?

    The interdisciplinary readership of MSDE has been the ideal audience for the topic of polymer-assisted rapid thermal annealing (RTA).
    2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?As summarized in this review paper, I am overwhelmingly excited to be a part of the adventure in this new research field!

    3. In your opinion, what are the most important questions to be asked/answered in this field of research?How does the molecular structure influence the degradation behaviors of polymers under high heating rates?4. Can you share one piece of career-related advice or wisdom with other early career scientists?Pursue projects you are genuinely passionate about, rather than following hot topics.Follow Reika on twitter! @Katsumata_R_
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSDE Emerging investigator – Nick Jackson

Nick Jackson is an Assistant Professor in the Chemistry Department at the University of Illinois, Urbana-Champaign. He is a member of the Beckman Institute for Advanced Science and Technology, the Department of Chemical and Biological Engineering, and the Department of Materials Science and Engineering. Prof. Jackson has been recognized with several awards including the DOE Early Career Award, the Dreyfus Machine Learning in the Chemical Sciences and Engineering Award, and the 3M Nontenured Faculty Award. His research group integrates quantum mechanics, statistical mechanics, and machine learning to design electronic structure and reactivity in soft materials, with a focus on coarse-graining approaches to electronic structure, modeling mixed electron-ion conductivity, and predicting the reactivity of polymers. He received his B.A. (2011) in Physics from Wesleyan University, followed by a Ph.D. (2016) in Chemistry from Northwestern University. Prior to his appointment at UIUC, he was a Maria Goeppert Mayer Fellow and Assistant Scientist joint between Argonne National Laboratory and the University of Chicago.

Read Nick’s Emerging Investigator article, Electron and ion transport in semi-dilute conjugated polyelectrolytes: view from a coarse-grained tight binding model , DOI: 10.1039/D2ME00285J

  1. How do you feel about MSDE as a place to publish research on this topic?

    I think that MSDE is an outstanding venue to publish research at the intersection of chemistry, materials science, and chemical engineering.2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

    At present I am most excited about trying to make quantum chemical predictions accessible to soft materials length scales (~10-100 nm), which are currently out of reach for traditional methods. These method development efforts typically require familiarity with state-of-the-art advances in machine learning, coarse-graining, and electronic structure calculations, which can be very difficult to keep on top of.

    3. In your opinion, what are the most important questions to be asked/answered in this field of research?

    The most important question that needs an answer in this field is if we can make coarse-grained electronic structure predictions as accurate and easy to use as traditional black-box quantum chemistry calculations. Time will tell!

    4. Can you share one piece of career-related advice or wisdom with other early career scientists?

    Follow the ideas that are YOUR ideas and that YOU are passionate about. Try not to let emerging research trends or fads distract you too much from what you are excited to be working on! The job is a lot more enjoyable when you are working on topics you love and not just trying to keep up with the Joneses.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSDE Emerging investigator – Hyungwoo Kim

Hyungwoo Kim is an Associate Professor of polymer science and engineering at Chonnam National University. He specializes in polymer synthesis and his research interests include molecular design of polymers with autonomous responses, synthesis of sustainable polymeric materials, and control of microstructures in polymers. Before joining the current university as an Assistant Professor in 2017, he received his Ph.D. in materials science and engineering in 2014 from Seoul National University and did postdoctoral research in the Dept. of Chemistry at Pennsylvania State University.

Find out more about Hyungwoo’s research on his webpage

Read Hyungwoo’s Emerging Investigator article, ‘Tailoring 6FDA-based click cross-linked membranes: modular synthesis and tunable gas separation‘, DOI: 10.1039/D2ME00215A

How do you feel about MSDE as a place to publish research on this topic?

MSDE is impressive for me. In general, when designing a material for a specific application, it is important to understand the underlying structure or mechanism, since it determines overall material properties. In this context, MSDE more focuses on fundamentals of research on a molecular level and of which the introductory part “design, system, application” particularly help readers catch the essential points.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSDE Emerging investigator – Gary Koenig

Gary Koenig began an appointment as an Assistant Professor of Chemical Engineering at the University of Virginia in 2012, and was subsequently promoted to Associate Professor in 2018. In addition to teaching and professional service commitments, Gary is the principal investigator of a group which researches energy storage materials and systems. Gary completed a B.S. from The Ohio State University and then a Ph.D. from the University of Wisconsin-Madison, with both degrees in Chemical Engineering. Before starting at University of Virginia, Gary was a Postdoctoral Associate at Argonne National Laboratory. Gary has published over 50 research articles. His expertise span from probing fundamental materials properties to grid scale energy storage evaluation, and includes both experimental and simulation tools.

Find out more about Gary’s research on his webpage

Follow Gary on Twitter at @ChemEBattery

Read Gary Koenig’s Emerging Investigator article, ‘Improving high rate cycling limitations of thick sintered battery electrodes by mitigating molecular transport limitations through modifying electrode microstructure and electrolyte conductivity‘, DOI: 10.1039/D1ME00082A

1. How do you feel about MSDE as a place to publish research on this topic?

MSDE was a good fit for for this paper, given the breadth of the molecular systems audience and the applications/technology significance component of the journal scope, which fits well with the energy storage applications of our research.

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

This work investigated an electrochemical system that has significant ion transport restrictions, and what is exciting is pushing the limits in such a system to understand how fast the overall electrochemical process can be driven. The most challenging aspect for this paper was identifying a suitable electrolyte to evaluate which improved the ion transport properties without causing other cell stability limitations.

3. In your opinion, what are the most important questions to be asked/answered in this field of research?

There are many in the broader field of battery research. Most specific to this research report is how to best optimize the trade-off between electrode designs that increase energy density while still maintaining reasonable charging times/rates. This ties in more broadly to other bigger challenges with regards to safety and reliability of battery cells.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSDE Emerging Investigator- Michael A. Webb

Michael Webb is an Assistant Professor in the Chemical and Biological Engineering department at Princeton University, joining in 2020. He obtained a B.S. in Chemical Engineering from UC Berkeley in 2011 and his Ph.D in 2016, also in Chemical Engineering, for “Path-integral and Coarse-graining Strategies for Complex Molecular Phenomena.” Between 2016-2019, he performed postdoctoral research at the University of Chicago and Argonne National Laboratory on coarse-graining, enhanced sampling, and machine learning of polymeric materials. His group emphasizes computational approaches, including hierarchical simulation and machine learning, for understanding and designing polymeric systems for diverse applications. He is a recent recipient of the NSF CAREER award and a Howard B. Wentz Junior Faculty award at Princeton University.

Read Michael’s Emerging Investigator Series article, ‘Featurization Strategies for Polymer Sequence or Composition Design by Machine Learning’, DOI: 10.1039/D1ME00160D and check out his interview below

How do you feel about MSDE as a place to publish research on this topic?

MSDE was an appealing venue for us for a few different reasons. First, I appreciate the focus in scope at MSDE in that published articles need to specifically highlight a molecular design or optimisation strategy. Our work falls in the latter category, and our motivation for study is very much for the reason for enhancing the process of polymer sequence and/or composition design in the future. In addition, MSDE seems to welcome contributions at the interface of molecular science and machine learning, and so I thought the general readership would be good.

What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

I am particularly excited about designing triggered stimuli-response into polymers using tools from both molecular simulation and machine learning. The most pressing problem at the moment, in my view, is the inadequacy of underlying models of this behaviour and their chemical specificity. As a logistical challenge, I would say it is difficult to stay abreast of both relevant simulation and machine learning literature and effectively train my researchers to be competent and confident in both areas.

In your opinion, what are the most important questions to be asked/answered in this field of research?

I think we and others have been asking good questions in the field of polymer machine learning. What we need to do moving forward is address what our answers mean or how they need to change as we increase the complexity of our design tasks and the true real-world relevance of developed methods. There has been significant useful benchmarking and demonstrations for ‘model’ systems, but now we need to see how the rubber meets the road.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Try to remember and reflect on why you are doing what you are doing, especially in times of high stress. This applies both for thinking about a specific research area but also more generally considering your career

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

MSDE Emerging investigator – Jai Prakash

Dr. Jai Prakash is working as Assistant Professor in the Department of Chemistry, NIT Hamirpur, (India). Previously, he worked as ‘INSPIRE Faculty’ (one of the prestigious faculty award by Department of Science and Technology, Govt. of India) in the Department of Chemical Engineering at Indian Institute of Technology (IIT) Kanpur, India (2016-2018). His Ph. D (2012), carried out at and sponsored by IUAC (formerly, Nuclear Science Center), New Delhi, was awarded by CCS University, Meerut (India). He worked as a postdoctoral researcher at INRS-EMT, Quebec (Canada), Aix-Marseille University (France), Universite Libre de Bruselles (Belgium) and University of the Free State, (South Africa).

He has received several national and international scientific awards including DAAD Academic Award (2018), Merit Scholarship Award (ranked# 1) (2017) from Quebec Govt. (Canada), Promising Young Researcher Award (2016) from NRF (South Africa), Prestigious INSPIRE faculty award (2015-2016) and Young Scientist Fast Track (2012) award from DST (India), Guest scientist (2014) from NIMS (Japan), and Senior Research Fellow (2011) from CSIR (India). He has published more than 90 research articles including book/chapters in international scientific peer reviewed journals. Some selected publications in higher impact factor journals; J. Materials Chemistry C, ACS Appl. Materials Interface, Carbon, Inter. Reviews in Phys. Chem., Energy Storage Materials, Molecular System Design and Eng., Adv. Energy Materials etc. have gained attention worldwide. Recently, he has been listed among World’s Top 2% Scientists List created by Stanford University (2021& 2022). He is serving as “Associate Editor’ in Frontiers in Environmental Chemistry journal.

His major research fields are functional nanomaterials, surface science, ion beam modifications of nanomaterials etc. His highly interdisciplinary research includes synthesis/characterizations of plasmonic, polymers, metal-oxides semiconductors nanomaterials, their nanocomposites for sensing, solar cell, optical, photocatalysis, SERS related environmental and energy applications.

Read Jai Prakash’s Emerging Investigator article, ‘Design and engineering of graphene nanostructures as independent solar-driven photocatalysts for emerging applications in the field of energy and environment‘, DOI: 10.1039/D1ME00179E

1. How do you feel about MSDE as a place to publish research on this topic?

It is very exciting to publish research on molecular systems in MSDE because it is unique in this sense which gives a feeling of completeness on such topics. It’s a best platform to publish on molecular design and engineering for multifunctional applications as MSDE appreciates authors provides update on the topics to readers. I recommend the researchers to publish their innovative work on molecular systems to this journal because it’s an emerging field for futuristic device applications as well as more fundamental studies at molecular level.

2. What aspect of your work are you most excited about at the moment and what do you find most challenging about your research?

The graphene based nanomaterials have the potential to compete with metal or semiconductor-based photocatalysts. I believe that next generation of device fabrication would be based on graphene based nanostructured materials especially in the field of energy and environment because of their unique optoelectronic and surface properties. These are emerging 2D nanomaterials showing fascinating properties for multifunctional applications and gaining interest by the researchers from all domain of sciences including biomedical. The key challenge about graphene nanomaterials is to explore as a sole material for different applications.

3. In your opinion, what are the most important questions to be asked/answered in this field of research?

In my opinion, the most important question in research of graphene based nanomaterials is whether these can replace metal based catalysts/photocatalysts in the field of energy and environment.

 4. Can you share one piece of career-related advice or wisdom with other early career scientists?

I would suggest my early career scientists’ fellows to work seriously on your topic of research with an emphasis on both positive and negative results. Build networks within your research community and try to make collaboration with scientists around the globe to exchange your ideas for fruitful and meaningful results in that direction. It will not only promote your research activities but also provide confidence to do better in the next step.

Find out more about Jai Prakash’s research on his webpage

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)