Author Archive

New themed collection on Supramolecular Chemistry – Expression on Interest for potential Guest Editors

MSDE is planning on running a themed collection related to Supramolecular Chemistry and we are currently seeking out researchers who maybe interested in potentially being a Guest Editor.

We are keen for this opportunity to be opened to the wider community and are asking for expressions of interest.

 

We are seeking 2-4 Guest Editors and are looking for the following:

  • Expertise in the specific topic area (supramolecular chemistry – the theme can be shaped further by the Guest Editorial team)
  • Independent research career
  • Diversity amongst the Guest Editors, this can include gender, geography, career stage, ethnicity, caring responsibilities etc.
  • Engagement: the time input is not high, but someone who is keen and therefore responsive to emails is key
  • Has their own network; a key role of the Guest Editors is to provide the invitee list in collaboration with the RSC Editorial Office.

 

Please be reassured that we aim to keep Guest Editors’ workload to a minimum, as we appreciate the many demands on your time. In brief, the role of the Guest Editor is:

  • Help write a short scope for the issue (to be used in the invitation letters and on the website)
  • Providing suggestions for invitees
  • Help write an Editorial for the issue
  • Occasionally act as an adjudicative referee in cases where conflicting referee reports are received during peer review

All invitations, reminder emails and responses are dealt with by the Editorial Office.

 

MSDE is a hybrid (transformative) journal and Plan S compliant, and gives authors the choice of publishing their research either via the traditional subscription based model or instead by choosing our gold open access option. More details can be found on our website: https://www.rsc.org/journals-books-databases/about-journals/msde

 

If you are interested in this opportunity, please fill in this form by 5 pm on Tues 17th December.

 

Applications will be reviewed by the MSDE Editorial team and assessed against the criteria above.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for papers: Additive Manufacturing

Molecular Systems Design & Engineering (MSDE) is delighted to announce a call for papers for its latest themed collection on “Additive Manufacturing” Guest Edited by Luke Connal (Australia National University) and Joseph DeSimone (Stanford University).

This collection aims to showcase the rapid innovations in additive manufacturing, including new processes, new materials and new applications. We are particularly interested in receiving submissions at the interface of multiple disciplines and that show applied systems.

 

Deadline for submission: 8 April 2022

 

Manuscripts should be submitted via the Royal Society of Chemistry’s online submission service available at https://mc.manuscriptcentral.com/msde. Please add a “note to the editor” in the submission form when you submit your manuscript to say that this is a submission for the themed collection. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of the collection.

All manuscripts will be subject to the journal’s usual peer review process. Accepted manuscripts will be added to the online collection as soon as they are online and they will be published in a regular issue of MSDE.

If you have any questions about the journal or the collection, then please do contact the Editorial Office at molecularengineering-rsc@rsc.org.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are very pleased to announce that Dr Luke Connal has joined MSDE as an Associate Editor

Luke Connal is an Associate Professor at the Research School of Chemistry at the Australian National University (ANU) where he is an ANU Futures Fellow.  His research program is in the design of advanced polymeric materials for applied systems. He has been recognised by numerous awards such as the ACS Chemical and Engineering News Talented 12. You can follow him on Twitter @LukeConnal.

 

Quote from Luke: I love the term molecular engineering - I believe this is at the heart of new matreials and applications. To design new materials with interesting properties you need to start from the molecular level. Molecular engineering is a great term that describes the intersection of different fields, including chemistry, materials engineering and biology. In the future I hope these traditional silos break down and we are thinking about molecular engineering in a general way to achieve our desired outcomes.

 

Luke’s favourite MSDE articles

Here are three publications that Luke has chosen as his favourite recent articles in MSDE.

 

Optimum in ligand density for conductivity in polymer electrolytes
Nicole Schauser, Peter Richardson, Andrei Nikolaev, Piper Cooke, Gabrielle Kliegle, Ethan Susca, Keith Johnson, Hengbin Wang, Javier Read de Alaniz, Raphaële Clément and Rachel Segalman

MSDE, 2021, 10.1039/D1ME00089F

 

 

 

 

SARS-Cov-2 spike protein N501Y mutation causes differential species transmissibility and antibody sensitivity: a molecular dynamics and alchemical free energy study
Xudong Hou, Zhilin Zhang, Jiali Gao and Yingjie Wang

MSDE, 2021, 10.1039/D1ME00086A

 

 

 

Controlling polymer architecture to design dynamic network materials with multiple dynamic linkers
Jafer Vakil, Nethmi De Alwis Watuthanthrige, Zachary Digby, Borui Zhang, Hannah Lacy, Jessica Sparks and Dominik Konkolewicz

MSDE, 2020, 5, 1267-1276

 

 

All these articles are currently FREE to read until 15 November 2021!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Junior Moulton Medal winners – Luke Forster, Le Yu and Carmine D’Agostino

This year, our partners the Institution of Chemical Engineers (IChemE), jointly awarded their Junior Moulton Medal to two sets of recipients for their respective works, both published in MSDE. The Junior Moulton Medal is awarded to the early-career author, or authors, of the most meritorious papers published by IChemE in the last year.

 

One set of this year’s recipients are Luke Forster, Le Yu and Carmine D’Agostino from the University of Manchester for their paper “Tailoring morphology of hierarchical catalysts for tuning pore diffusion behaviour: a rational guideline exploiting bench-top pulsed-field gradient (PFG) nuclear magnetic resonance (NMR)”.

 

Profile picture of Luke ForsterLuke Forster received his MChem at the University of Sheffield and is currently studying for a PhD in Chemical Engineering at the University of Manchester under the supervision of Dr. Carmine D’Agostino, working in the Catalysis & Porous Materials group. His current project involves the use of low-field NMR diffusion and relaxation measurements to investigate mass transport and adsorption processes in porous, surface functionalised catalytic materials in order to better explain their influence on catalytic activity and selectivity.

 

 

 

Profile picture of carmine D'AgostinoCarmine D’Agostino received his BEng and MEng in Chemical Engineering at the Universita’ di Napoli “Federico II” and a PhD in Chemical Engineering at the University of Cambridge under the supervision of Prof. Lynn Gladden. He is currently a Lecturer in Chemical Engineering at The University of Manchester, working in the Catalysis & Porous Materials group. His research interests focus on investigating diffusion, dynamics and adsorption of complex fluids and fluids within porous structures and catalysts using spectroscopic techniques, including high-field and low-field NMR. He received several awards, including the Young Scientist Award at the International Conference on Catalysis, the Reaction Chemistry & Engineering Emerging Investigator and a prestigious Junior Research Fellowship from Wolfson College, University of Cambridge.

 

 

 

Read their Junior Moulton Medal winning paper “Tailoring morphology of hierarchical catalysts for tuning pore diffusion behaviour: a rational guideline exploiting bench-top pulsed-field gradient (PFG) nuclear magnetic resonance (NMR)”. This article is part of our collection MSDE for the 2021 MSDE Symposium and all articles are FREE to read until 15 July.

 

Group leader Carmine D’Agostino has kindly answered some questions for us.

Your Moulton Medal winning paper focuses on tailoring textural properties of catalysts to tune their transport properties. In your opinion, what are the most important questions to be asked/answered in this field of research?

Catalyst design is crucial for enabling a large number of chemical processes. One aspect that is often overlooked, yet very important for the industrial applications of catalytic materials, is the ability to tune mass transport within the porous matrix of the catalyst and how this is related to the final morphology of the material, which is in turn related to the manufacturing process. Whilst this aspect is marginally discussed in the literature for laboratory scale catalysts, we noted that for catalysts prepared on an industrial scale not much was reported in this area.

In our work together with the company Haldor Topsøe, one of the key international players in catalyst manufacturing, we provide a clear relationship between catalyst preparation methods on a large scale, pore morphology and its effect on internal mass transport by diffusion, setting a rational guideline for tuning pore diffusivity by acting on the conditions used in the manufacturing process of catalytic materials, particularly important to industrial manufacturers. In addition, we do so using newly developed, bench-top NMR instruments, which unlike traditional and expensive high-field superconductive magnets, are much more affordable, compact and hence can easily be easily placed in industrial R&D labs.

What aspect of your work are you most excited about at the moment?

Low-field, bench-top NMR is a relatively new development in the area of NMR diffusion measurements and it is generally regarded as a tool with several limitations compared to high-field instruments. However, in our work we were able to show that these instruments are able to probe and quantify diffusion in industrially relevant samples, providing data of excellent quality. We are excited about demonstrating the ability of such instruments to reveal new insights into such complex industrial productions and we hope that our work will contribute to further develop the set of tools available in catalysis R&D labs, looking at aspects that have so far been overlooked, such as that of transport-morphology-synthesis relationship.

What do you find most challenging about your research?

As highlighted above, unlike conventional high-field NMR instruments, the use of low-field bench-top NMR presents some technical limitations. In addition, the use of real-world catalyst materials adds additional challenges as often these materials can contain impurities, which may affect the quality of the data and their interpretation. Hence, optimisation of experimental set-up and careful data analysis and interpretation need a particular attention.

In which upcoming conferences or events (online or in person) may our readers meet you?

We will be presenting this work online as a poster at the 15th International Conference on Materials Chemistry (12/07/21 – 15/07/21). Additionally, we will be giving presentations on this work at the 2021 MSDE Symposium for the RSC which will feature the Emerging Investigator community (17/06/21 – 18/06/21), which will be free to attend to all. Finally, we will be accepting our award at an online ceremony and webinar organised by the IChemE which is yet to have a date set and we will be giving a presentation of the award winning work there. We look forward to meeting as many people as possible and discussing this work with them!

 

Register before for FREE 3 June for the 2021 MSDE Symposium!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Junior Moulton Medal winners – David Danaci, Mai Bui and Niall MacDowell

This year, our partners the Institution of Chemical Engineers (IChemE), jointly awarded their Junior Moulton Medal to two sets of recipients for their respective works, both published in MSDE. The Junior Moulton Medal is awarded to the early-career author, or authors, of the most meritorious papers published by IChemE in the last year.

 

One set of this year’s recipients are David Danaci, Mai Bui and Niall MacDowell from Imperial College London for their paper “Exploring the limits of absorption-based CO2 capture using MOFs with PVSA – from molecular design to process economics”.

 

Profile picture of David DanaciDavid Danaci is a research associate at the Department of Chemical Engineering, Imperial College London. His research is a combination of experimental work (materials synthesis to pilot-scale), process modelling, and techno-economic analysis. He currently works on adsorption-based separations for CO2 capture, and has previously investigated other applications including O2 production, and natural gas sweetening. He also has experience with other gas separation technologies including physical and chemical absorption, and cryogenic distillation. He has also worked on heterogenous reaction processes including methanol and dimethyl ether production for CO2 utilisation, and H2 production via methane reforming. David is also a member of the Education Committee of the International Adsorption Society.

 

 

profile picture of Mai BuiMai Bui is a senior research associate in the Centre for Environmental Policy at Imperial College London and co-leads the Clean Fossil and Bioenergy Research Group with Professor Niall Mac Dowell. She has experience designing demonstration tests in pilot plants, operating and modelling CO2 capture plants in Australia, the UK and Norway. Her research focuses on evaluating the potential of different CO2 capture technologies in the context of power, industry and negative emission applications (e.g. bioenergy with CCS and direct air capture).

 

 

 

Profile picture of Niall MacDowellNiall MacDowell is a Professor in Energy Systems Engineering at Imperial College London. He is a Chartered Engineer, a Fellow of both the IChemE and the Royal Society of Chemistry. His research is focused on understanding the transition to a low carbon economy. Since receiving his PhD 2010, he has published more than 150 peer-reviewed scientific papers at the molecular, unit operation, integrated process, and system scales in this context. A full list of publications can be found here and he currently serves on the Advisory Board of Joule. Niall has more than a decade’s experience as a consultant to the public and private sectors. He has worked with a range of private sector energy companies, and has provided evidence to members of the Select Committee on Energy and Climate Change and has given advice to DECC/BEIS, the UK’s National Infrastructure Commission, the IEA, the IEAGHG the ETI and the JRC. Niall is a member of Total’s Scientific Advisory Board, was also a member of the US National Petroleum Council (NPC) CCUS Roadmap Team. Niall has been a member of the technical working group of the Zero Emissions Platform (ZEP), the Carbon Capture and Storage Association (CCSA) and from 2015 – 2019 served as the Secretary of the IChemE’s Energy Centre. Finally, Niall was awarded the Qatar Petroleum Prize for his PhD research in 2010 and the IChemE’s Nicklin and Junior Moulton medals for his work on low carbon energy in 2015 and 2021, respectively.

 

Read their Junior Moulton Medal winning paper “Exploring the limits of absorption-based CO2 capture using MOFs with PVSA – from molecular design to process economics”. This article is part of our collection MSDE for the 2021 MSDE Symposium and all articles are FREE to read until 15 July.

 

Research Associate David Danaci has kindly answered some questions for us.

Your Moulton Medal winning paper focuses on MOF design for CO2 capture. In your opinion, what are the most important questions to be asked/answered in this field of research?

Tens of thousands of MOFs have been synthesised, but only a handful are being pursued for selected applications. The practical information required to evaluate the performance of nearly all of these materials (for any application) does not exist.

In this regard, comprehensive computational studies have been carried out over the past few years by other research groups. An opportunity now exists to experimentally validate those results for the top performing materials, and ascertain other factors such as stability towards moisture and impurities, and long-term cyclic stability. Conversely, studies like ours, and others that have also been published, have identified key properties that should be displayed by materials for good CO2 capture performance, i.e., post-combustion conditions. The question that arises is whether materials can now actually be rationally designed to meet those criteria. Progress in either avenue would be valuable to the adsorption, and CO2 capture fields.

Aside from the focus on adsorbents, there are still many questions around the best adsorption process design for a given CO2 capture application. Any adsorption-based separation is a combination of adsorbent and process selection, so it cannot be overlooked. Further research in this area is required in order to investigate avenues for cost reduction.

What aspect of your work are you most excited about at the moment?

There is a portfolio of different CO2 capture technologies (e.g. absorption, adsorption, membranes) and a range of different applications. There are still many questions to be answered around the optimum process designs and techno-economic analysis. Related to that, although amine absorption is a viable CO2 capture technology in the vast majority of cases, there are some instances where it may not be the cost optimal solution. Identifying where adsorption processes will be the most effective is an area of interest, particularly with respect to the other capture technologies.

Aside from CO2 capture for climate change mitigation, there are also many other separations which are of industrial importance that have not received as much attention to date. Specifically, rare gas separation, alkane-olefin separation, and low-energy alternatives to distillation processes. So, there are still many other applications to investigate in the future.

What do you find most challenging about your research?

In the context of evaluating new adsorbents for CO2 capture, the biggest limitation is availability of the necessary experimental data which are inputs to process modelling. Previously, there has not been a sensible approach in selecting candidate materials from the thousands of alternatives to perform these measurements on; however, the computational work mentioned earlier has narrowed down that search space. Process design and modelling can be carried out on conventional adsorbents for which sufficient data is available, however, the outcomes are adsorbent-specific so the findings cannot be translated to other adsorbents.

Specifically in the context of MOFs, a MOF may have been synthesised once off with crystals obtained to perform x-ray diffraction, and submitted as a new material to the database. However, reproducibility is rarely investigated. Therefore, although computational studies may indicate good performance based on that crystallographic data, it may be difficult or impossible to reproduce the material in sufficient quantity to carry out the required measurements.

In which upcoming conferences or events (online or in person) may our readers meet you?

We will be attending the 2021 MSDE Symposium between the 17th and 18th of June, FEZA2021 Virtual between the 5th and 9th of July, and the AIChE Virtual Annual Meeting between the 15th and 19th of November.

 

Register for FREE before 3 June for the 2021 MSDE Symposium!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)