A novel micromixer based on the alternating current-flow field effect transistor
Following the success of Peer Review Week in September 2016 (dedicated to reviewer recognition) during which we published a list of our top reviewers, we are delighted to announce that we will continue to recognise the contribution that our reviewers make to the journal by announcing our Outstanding Reviewers each year.
We would like to highlight the Outstanding Reviewers for Lab on a Chip in 2016, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.
We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.
Professor Guoqing Hu, Institute of Mechanics, Chinese Academy of Sciences |
Dr Kosuke Ino, Tohoku University |
Professor Daniel Irimia, Harvard Medical School |
Dr Sung Jae Kim, Seoul National University |
Professor Chang Lu, Virginia Tech |
Dr Julien Reboud, University of Glasgow |
Dr Kangning Ren, Hong Kong Baptist University |
Dr Yu-suke Torisawa, Kyoto Daigaku |
Dr Qian Wang, Ohio State University |
Dr Edmond Young, University of Toronto |
We would also like to thank the Lab on a Chip board and the lab-on-a-chip community for their continued support of the journal, as authors, reviewers and readers.
If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé. You can find more details in our author and reviewer resource centre.
You have worked hard all year and wanted to treat yourself with something different for the summer. You decided to arrange a journey to South-Africa to enjoy the beautiful natural scenery. Discovering the range of wildlife in immense national parks, hiking in mountains, and meeting with warm locals made your journey unforgettable. You arrived at one of the best photography spots in a national park just before the sunset. While focussing on capturing the best image from the picturesque scenery, you got bitten by a Marsh mosquito, perhaps infected with a Plasmodium falciparum parasite. This parasite is known for causing malaria, the most significant parasitic disease of humans. You are not the only one: approximately 30,000 travellers from industrialized countries contract malaria each year. During the next 14 days, this parasite will differentiate and proliferate in the body. It will invade and destroy the red blood cells, eventually affecting the liver, spleen, and brain functionality. A few days after the bite, you found a small-scale laboratory for the malaria diagnosis test, but there was a problem: this laboratory can detect malaria only if you have 50-100 parasites per microliter of blood, occurring when the patient carries the parasite for weeks. You, then, had to find a larger laboratory equipped with a benchtop loop-mediated isothermal DNA amplification (LAMP) system, which can detect 1 malaria parasite per microlitre of blood. You wished there was a highly sensitive device for malaria diagnosis at the point of need. Well, we might have some good news for you.
Modern nucleic acid testing methods of malaria detection, such as LAMP, enable high sensitivity, high specificity, robust, and rapid analyses for asymptomatic infections. As performing these methods requires bulky and costly peripheral equipment and trained technicians, access to such equipment in rural areas is unlikely. Fortunately, researchers in Pennsylvania State University recently introduced a stand-alone, portable, and high sensitivity system that can perform “sample-in-answer-out” analyses. The system consists of a compact disc and a reader unit (Figure 1). The compact disc includes valves and microfluidic channels, where the blood sample is processed using magnetic beads. The reader unit can automatically perform all analysis steps including DNA purification, elution, amplification, and real-time detection. For a real demonstration of how the test is performed, the movie included below is well worth the watch. Test results can be displayed on a LCD screen or a smartphone within 40 minutes. The system can detect down to 0.6 parasites per microliter of blood. Each test costs around $1. With these specifications, this technology has the opportunity to create a new paradigm in molecular diagnosis at the point of care.
To download the full article for free* click the link below:
A field-deployable mobile molecular diagnostic system for malaria at the point of need
Gihoon Choi, Daniel Song, Sony Shrestha, Jun Miao, Liwang Cuic and Weihua Guan
Lab Chip, 2016, Articles
DOI: 10.1039/C6LC01078D
Burcu Gumuscu is a postdoctoral fellow in BIOS Lab on a Chip Group at University of Twente in The Netherlands. Her research interests includedevelopment of microfluidic devices for next generation sequencing, compartmentalized organ-on-chip studies, and desalination of water on the microscale.
We are delighted to announce our new Associate Editor – Hang Lu!
Hang Lu is the Love Family Professor of Chemical and Biomolecular Engineering at Georgia Tech. She graduated summa cum laude from UIUC with a B.S. in Chemical Engineering, and obtained her Ph.D. in Chemical Engineering in 2003 from MIT working with Klavs Jensen and Martin Schmidt. Before starting at Georgia Tech in 2005, she was a postdoc with neurogeneticist Cori Bargmann at UCSF and Rockefeller U. Her current research interests are microfluidics and its applications in neurobiology, systems biology, cancer, and biotechnology.
Hang has previously been a member of the Lab on a Chip Advisory Board. You can read some of her recent publications in the Journal below.
Hang will be handling papers from 1st February 2017, so submit your best work to her!
Auillaume Aubry, Mei Zhan and Hang Lu
Luye He, Ariel Kniss, Adriana San-Miguel, Tel Rouse, Melissa L. Kemp and Hang Lu
The articles below are some of the most read Lab on a Chip articles in 2016. You can view the full collection of our top 25 downloaded articles here.
3D printed microfluidic devices: enablers and barriers
Sidra Waheed, Joan M. Cabot, Niall P. Macdonald, Trevor Lewis, Rosanne M. Guijt, Brett Paull and Michael C. Breadmore
Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics
Nachiket Shembekar, Chawaree Chaipan, Ramesh Utharala and Christoph A. Merten
Fundamentals and applications of inertial microfluidics: a review
Jun Zhang, Sheng Yan, Dan Yuan, Gursel Alici, Nam-Trung Nguyen, Majid Ebrahimi Warkiani and Weihua Li
The upcoming 3D-printing revolution in microfluidics
Nirveek Bhattacharjee, Arturo Urrios, Shawn Kang and Albert Folch
A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis
Zheng Zhao, Yang Yang, Yong Zeng and Mei He
Keep up-to-date with the latest issues of Lab on a Chip by joining our e-alerts.
The 4th Analytical Biosciences Early Career Researcher Meeting is the annual meeting organised by the Royal Society of Chemistry Analytical Biosciences Group aimed at engaging with and promoting early career researchers work. This year, it will be held the University of Warwick in Coventry, UK on 15th-16th March. They hope to “engage in discussions and debate through considering applications of the current and future analytical technologies”. Confirmed keynote speakers include Mark Viant, from the University of Birmingham, Pete O’Connor, from the University of Warwick and Matthew Baker, from the University of Strathclyde. To find out more about the programme and to register to attend, please visit their website.
Important Dates:
Abstract Submission Deadline: 1st March 2017
Early Bird Registration Deadline: 31st January 2017
Submit your abstract in order to take advantage of this excellent opportunity to present your work!