Archive for the ‘Emerging Investigators’ Category

Emerging Investigator Series – Weian Zhao

Dr. Weian Zhao is an Associate Professor at the Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, Department of Biomedical Engineering, and Department of Pharmaceutical Sciences at University of California, Irvine. Dr. Zhao is also the co-founder of Velox Biosystems Inc, Baylx Inc, and Amberstone Biosciences LLC, start-up companies that aim to develop technologies for rapid diagnosis, stem cell therapy, and drug discovery, respectively. Dr. Zhao’s research aims to 1) elucidate and eventually control the fate of transplanted stem cells and immune cells to treat cancer and autoimmune diseases, and 2) develop novel miniaturized devices for early diagnosis and monitoring for conditions including sepsis, antibiotic resistance and cancer. Dr. Zhao has received several awards including the MIT’s Technology Review TR35 Award: the world’s top 35 innovators under the age of 35 and NIH Director’s New Innovator Award. Dr. Zhao completed his BSc and MSc degrees in Chemistry at Shandong University and then obtained his PhD in Chemistry at McMaster University in 2008. During 2008-2011, Dr. Zhao was a Human Frontier Science Program (HFSP) Postdoctoral Fellow at Harvard Medical School, Brigham and Women’s Hospital and MIT.

Read Dr Zhao’s Emerging Investigator article “Functional TCR T cell screening using single-cell droplet microfluidics” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on functional TCR T cell screening using single-cell droplet microfluidics. How has your research evolved from your first article to this most recent article?

I was trained as a colloidal and surface chemist. My first paper back when I was a PhD student was about building nanostructures using DNA as a template. Over the years, my research has evolved towards addressing immediate, major unmet need in biology and medicine; this is achieved by developing new tools and technologies, often using an interdisciplinary and collaborative approach, as exemplified by this new paper.

What aspect of your work are you most excited about at the moment?

It is the perspective that what we do in research can potentially solve real-world problems and help the patients in a short term. Like this new paper illustrated, our single-cell system holds great potential to accelerate development of cancer immunotherapeutics. There is a great and urgent demand in the clinic for many more of this type of promising drugs that can benefit patients who do not have lots of time to wait.

In your opinion, how can droplet microfluidic technologies contribute to immune-screening and immuno-therapy and personalised medicine in general?

Droplet microfluidic technologies and other exciting single-cell systems being developed in our field can contribute to immune-screening, immuno-therapy and personalised medicine by significantly reducing the time needed for the discovery phase. For example, conventional screening platforms for immunologic agents such as antibodies or T cells, usually take months to years to obtain a therapeutic candidate whereas the new single-cell platforms can potentially do this in the matter of days to weeks. In this new paper, this ability is enabled by directly interrogating the “functions” of individual cell clones in greater depth by using single-cell analysis. As biological samples are heterogeneous, this key information is often lost in conventional, population based studies.

What do you find most challenging about your research?

It is always the people. I take time to identify and build the right team that, once in place, can almost conquer any challenges in research itself. I also wish I could spend more time to do research rather than writing grants.

In which upcoming conferences or events may our readers meet you?

IEEE EMBS Micro & Nanotechnology in Medicine 2018, Physical Science of Cancer (GRS) 2019, and PEGS 2019

How do you spend your spare time?

Mostly with the family, and watching Manchester United games.

Which profession would you choose if you were not a scientist?

Probably try to become a football manager in the English Premier League. There is a lot of similarity in running a research laboratory and running a football club, isn’t there?

Can you share one piece of career-related advice or wisdom with other early career scientists?

Ask for help and mentorship from people who have succeeded in what you are trying to do. Try to accelerate your progress through collaboration and partnership.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Kyle Bishop

Kyle Bishop

 

Introducing Kyle Bishop: Lab on a Chip‘s latest Emerging Investigator

Kyle Bishop received his PhD in Chemical Engineering from Northwestern University under the guidance of Bartosz Grzybowski for work on nanoscale forces in self-assembly. Following his PhD, Dr. Bishop was a post-doctoral fellow with George Whitesides at Harvard University, where he developed new strategies for manipulating flames with electric fields. He started his independent career at Penn State University in the Department of Chemical Engineering. In 2016, Dr. Bishop moved to Columbia University, where he is currently an Associate Professor of Chemical Engineering. Dr. Bishop has been recognized by the 3M Non-tenured Faculty award and the NSF CAREER award. His research seeks to discover, understand, and apply new strategies for organizing and directing colloidal matter through self-assembly and self-organization far-from-equilibrium.

 

 

Read Dr Bishop’s article entitled ‘Measurement and mitigation of free convection in microfluidic gradient generators’ and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on the measurement and mitigation of free convection in microfluidic gradient generators. How has your research evolved from your first article to this most recent article?

Our first article in Lab on a Chip focused on harnessing electric potential gradients to power transport and separations within microfluidic systems. Here, we examine how chemical gradients can drive fluid flows as well as motions of colloidal particles, lipid vesicles, and living cells. These topics are linked by our continued interest in harnessing and directing thermodynamic gradients to perform dynamic functions at small scales.

What aspect of your work are you most excited about at the moment?

Currently, we are excited by our pursuit of colloidal “robots” that organise spontaneously in space and time to perform useful functions, which can be rationally encoded within active soft matter.

In your opinion, what is the future of microfluidic gradient generators? Any new applications you foresee for them?

Our interest in microfluidic gradient generators grew from a desire to quantify the motions of lipid vesicles in osmotic gradients (so-called osmophoresis).  These measurements were plagued by undesired gradient-driven flows.  We thought that our efforts to understand and mitigate these flows would be useful to others studying gradient driven motions (e.g., chemotaxis of living cells).

What do you find most challenging about your research?

Staying focused. The world is filled with many micro-mysteries that may pique your curiosity, but time is limited. Picking problems and following through on their solution is an ever-present challenge.

In which upcoming conferences or events may our readers meet you?

Our group regularly attends the AIChE Annual Meeting and the ACS Colloid and Surface Science Symposium.

How do you spend your spare time?

Exploring New York City with my family and thinking about science.

Which profession would you choose if you were not a scientist?

What a horrible thought…perhaps a lawyer as I value evidence-based reasoning and the rule of law (physical or otherwise).

Can you share one piece of career-related advice or wisdom with other early career scientists?

Think big and collaborate often.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Scott Tsai

Dr. Scott Tsai is an Associate Professor in the Department of Mechanical and Industrial Engineering at Ryerson University, and an Affiliate Scientist at the Li Ka Shing Knowledge Institute of St. Michael’s Hospital. He obtained his BASc degree (2007) in Mechanical Engineering from the University of Toronto, and his SM (2009) and PhD (2012) degrees in Engineering Sciences from Harvard University. After a brief NSERC Postdoctoral Fellowship at the University of Toronto, Dr. Tsai joined Ryerson University at the end of 2012. He leads the Laboratory of Fields, Flows, and Interfaces (LoFFI), which is currently developing innovative microfluidic approaches to generate and use water-in-water droplets and microbubbles in a variety of biomedical applications. Dr. Tsai is a recipient of the United States’ Fulbright Visiting Research Chair Award (2018), Ontario’s Early Career Researcher Award (2016), Canadian Society for Mechanical Engineering’s I. W. Smith Award (2015), and Ryerson University’s Deans’ Teaching Award (2015).

Read Dr. Tsai’s Emerging Investigator Series article “Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform” and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on microfluidic diamagnetic water-in-water droplets. How has your research evolved from your first article to this most recent article

My group’s research is contributing to the exciting and emerging theme of all-aqueous and biocompatible water-in-water droplet microfluidics, which was started just a few years ago. Following the pioneering work of others, such as Anderson Shum (University of Hong Kong), we demonstrated that pulsating inlet pressures could be used to break-up all-aqueous threads into water-in-water droplets (Moon et al.Lab on a Chip, 2015). We subsequently simplified the approach by using weak hydrostatic pressure to passively create the water-in-water droplets (Moon et al.Analytical Chemistry, 2016), which enabled other applications, such as cellular encapsulation and release (Moon et al.Lab on a Chip, 2016), Pickering-style stabilization (Abbasi et al.Langmuir, 2018), and diamagnetic manipulation, as described in this paper. I am really excited to see what other tools emerge in the coming years that leverage water-in-water droplet microfluidics.

What aspect of your work are you most excited about at the moment?

I think right now, we as a community are still in the phase of developing the functionality and performance of water-in-water droplet microfluidics platforms. However, I have not seen many papers that leverage the unique characteristics of water-in-water droplets, which are based in aqueous two phase systems (ATPS). For example, ATPS fluids can selectively partition molecules and cells into or out of the droplet phase. I am most excited to see what we and other researchers can create that exploits unique features such as this.

In your opinion, what do you think is the future of droplet encapsulation technologies for single cell analysis?  

Predicting the future is always difficult, but I would say that at some point there will start to be some kind of standardization of encapsulation technologies, so that the entire field can move further into single cell analysis applications.

What do you find most challenging about your research?

I find that the most challenging aspect is related to selecting the right problems to work on. Water-in-water droplet microfluidics is emerging and there are many possibilities for research in this area. However, we have limited resources like time and funding, so we have to be selective about which problems to work on, and try to pick the ones that we think will have the greatest impact on advancing the field.

In which upcoming conferences or events may our readers meet you?

I always enjoy learning more about fluid mechanics at the American Physics Society’s Division of Fluid Dynamics (APS-DFD) meeting. I am also a huge fan of the Ontario on a Chip symposium, which was sponsored by Lab on a Chip this year. I was the co-host with Edmond Young and Milicia Radisic (both from the University of Toronto) of Ontario on a Chip for a few years, and my entire group attends the symposium every year. The keynote talks by international leaders in our field draws many attendees, but I am also always amazed by the quality of the student presentations.

How do you spend your spare time?

These days, my spare time is mostly spent with my young family—my wife Edlyn, and my two daughters, Abigail (4) and Chloe (1). I also do some volunteer work for my church. Additionally, as kind of an avid cyclist, I enjoy mountain biking on weekends, and road biking for my commute to work, and for charity rides for example Ride for Heart. Interestingly, I also bike commute sometimes with my Ontario on a Chip co-host, and LOC Emerging Investigator Edmond Young – so perhaps cycling contributes to one’s ability to be a good investigator!

Which profession would you choose if you were not a scientist?

This seems to change at various points in my life. (If you had asked me this question when I was a teenager, I would have probably said that I wanted to be a professional basketball player.) Right now, I think if I was not a scientist I would probably be a bicycle mechanic. Indeed, if I ever retire from science, I might actually attempt to get a job as a mechanic at my local bike shop.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Find a mentor that is well-established, willing to help you, and understands the intricacies of academia, funding, and other aspects of science careers. I was fortunate to receive this kind of mentorship from one of my collaborators from the start of my independent research career. I regard this mentorship as probably the most important factor that has helped me advance in my career.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Yi-Chin Toh

Dr Yi-Chin Toh obtained her B.Eng in Chemical Engineering and PhD in Bioengineering from the National University of Singapore in 2001 and 2008 respectively. She did her post-doctoral training at the Massachusetts Institute of Technology in 2008 before joining the Institute of Bioengineering and Nanotechnology, A*STAR as a research scientist in 2010. Since 2014, she is an Assistant Professor at the Department of Biomedical Engineering, National University of Singapore.  Yi-Chin’s research interest is in engineering multi-tissue in vitro models to mimic complex biological interactions during human development and diseases, and translate them into scalable platforms for disease modeling and drug testing applications. Dr Toh is a recipient of the National University of Singapore Research Scholarship, A*STAR Graduate Scholarship and A*STAR International Fellowship.

Read her full Emerging Investigator Series article A liver-immune coculture array for predicting systemic drug-induced skin sensitization”  and find out more about her in the video interview below:

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Weiqiang Chen

Dr. Weiqiang Chen is an Assistant Professor in the Departments of Mechanical and Aerospace Engineering and Biomedical Engineering at New York University. He received his B.S. in Physics from Nanjing University in 2005 and M.S. degrees from Shanghai Jiao Tong University in 2008 and Purdue University in 2009, both in Electrical Engineering. He earned his Ph.D. degree in Mechanical Engineering from the University of Michigan in 2014.  He is the receipt of the National Institute of Biomedical Imaging and Bioengineering Trailblazer Award, the American Heart Association Scientist Development Award,  the NYU Whitehead Fellowship, the 2013 Baxter Young Investigator Award, the University of Michigan Richard F. & Eleanor A. Towner Prize for Outstanding PhD Research, and the ProQuest Distinguished Dissertation Award. Dr. Chen’s research interests focus on Lab-on-a-Chip, biomaterials, mechanobiology, stem cell biology, caner biology, and immune engineering.

Read his latest Emerging Investigator Series article An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on “An Integrated Adipose-Tissue-On-Chip Nanoplasmonic Biosensing Platform for Investigating Obesity-associated Inflammation”. How has your research evolved from your first article to this most recent article?

We have previously been interested in developing microfluidic biosensing systems for immune cell cytokine detections. Quantitative measurements of the cytokine-producing capacity of different immune cells are critically important for characterizing the immune cell functions and defining the “immune phenotypes” of patients for clinical diagnosis and interventions. Although many advanced biosensing techniques have been purposed for cytokine profiling, there are no clinically available methods that integrate high-resolution immune cell monitoring and multiplexed cytokine detection together in its native tissue microenvironment, which is a big hurdle to understand the cellular immunophenotype behaviors during disease progression. This has inspired us to consider of combining the label-free nanoplasmonic biosensors with an Adipose-Tissue-on-Chip system reported in the recent article to quantitatively characterize obesity-associated dynamic cytokine secretion behaviors in a complex biomimetic adipose tissue microenvironment.

What aspect of your work are you most excited about at the moment?

I am most excited about the potential of our research for future applications in personalized medicine.

In your opinion, what do you think the contribution of disease-on-a-chip models for personalised medicine is likely to be?

Traditional medicine, which mostly relies on test of treatment on animal models, has many limitations. This is because the traditional animal models cannot mimic human pathophysiology accurately. Alternatively, the disease-on-a-chip platform can mimic an ideal microenvironment of human pathologic tissue, which enables a more accurate way to test the medicine activity under molecular- and cellular-scale in human organ tissue in vitro. Particularly, the cellular immunophenotype behavior is highly correlated with the tissue microenvironment. Unquestionably, integrating in situ cellular and molecular immune profiling in an organotypic setting can provide a reliable and accurate screening to characterize cell functions in its native tumor microenvironment. More importantly, due to the heterogeneity between individual human being, even for patients who are diagnosed with the same disease, their response to a same medicine treatment can be diversified. The minimized microfluidic disease-on-a-chip model can be derived from the specific patient’s cells or explanted pathophysiology tissue, allows parallel screening of multiple medical treatments in personalized manner. Therefore, this technology will provide the most efficient way to identify the most effective personalized medical options before applying to the patient’s own self.

What do you find most challenging about your research?

The most challenging part about our research is to accelerate translational technologies from the benchtop to the clinic to make a real impact on patients. A number of obstacles, including differences in culture between basic and clinical researchers, difficulty in developing and sustaining interdisciplinary collaborations, inadequate training and knowledge in medical sciences, and lack of funding, resources, or infrastructure, have limited the opportunities for basic bioengineering investigators, including myself, to conduct translational research. Therefore, my lab has established strong collaboration with many clinical colleagues at NYU Langone Health. Their expertise will contribute most significantly to our research from the biology and clinical aspects. Through this, I believe our engineering methods can introduce real impact to translational clinical research.

In which upcoming conferences or events may our readers meet you?

We will present our research in the upcoming Biomedical Engineering Society (BMES) Annual Meeting and the International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS 2018).

How do you spend your spare time?

I enjoy watching movies, spending time with family and friends, and traveling to different cities around the world.

Which profession would you choose if you were not a scientist?

I would probably choose a career in social science.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Something I could suggest is to be patient in testing your new ideas. It always take some time, normally years, for a scientist to prove a new scientific idea and develop it into practical methods or solutions.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Kiana Aran

Dr. Aran received her undergraduate degree in electrical engineering at the City University of New York in 2007 and her Ph.D in biomedical engineering at Rutgers University in 2012. She then continued her postdoctoral studies in bioengineering at the University of California Berkeley and was a recipient of National Institutes of Health (NIH) postdoctoral training fellowship at the Buck Institute for Age Research in 2015. She joined Keck Graduate Institute in 2017 as an Assistant Professor and is a currently a visiting scientist at the University of California Berkeley. She is also a consultant for Bill and Melinda Gate Foundation and cofounder of NanoSens innovations. Since starting her faculty position in 2017, Dr. Aran work has been supported by various funds including one RO1, industry sponsored research and a 3 years subaward from University of California Berkeley.

Read her Emerging Investigator Series article “Graphene-based biosensor for on-chip detection of Bio-orthogonally Labeled Proteins to Identify the Circulating Biomarkers of Aging during Heterochronic Parabiosis” and find out more about her in the interview below:

 

Your recent Emerging Investigator Series paper focuses on digital detection of tagged proteins in vivo to identify the circulating biomarkers in aging. How has your research evolved from your first article to this most recent article?

I was a recipient of an NIH T32 award during my last years of postdoc training at UC Berkeley (2015-2017) which provided me with the opportunity to work with Dr. Irina Conboy, a pioneer in utilizing bio-orthogonally labeled proteins for research on aging. This approach enabled the detection of several rejuvenating protein candidates from the young parabiont, which were transferred to the old mammalian tissue through their shared circulation. Although this method was very powerful, there were a lot of challenges with the detection of these tagged proteins including very time consuming, complex and expensive assays, large sample requirement and false positive. I started working on this project as a side project along with other projects I had with Dr. Conboy just to make the process more facile so we can detect these protein faster and more continuously. This work is a great example of utilizing a lab on a chip technology for a real application. I have also started collaboration with nanomedical diagnostics, a startup company in San Diego, to enable mass production of our chips with high reproducibility. With my academic and industrial collaborators, we are planning to utilize this technology for at least two different applications in the near future to better understand the biology of aging.

What aspect of your work are you most excited about at the moment?

I am very excited to see my technologies go beyond publications. Two of my inventions have been licensed toward developing medical devices for drug delivery and medical diagnostics and the joy from that have been the biggest drive for me to work harder.

In your opinion, what is the future of portable devices for biosensing?

Even though still in its emerging stage, digital diagnostics and 2D materials will shape the future of biosensors.

What do you find most challenging about your research?

As a junior faculty, it is difficult to recruit highly motivated postdoctoral researchers. Unfortunately, the majority of postdoctoral candidates often look for a well-established laboratory headed by a leading scientist. Students and postdoc should know that working in a new lab can be challenging but can provide researcher with opportunities to strengthen their scientific and management skills.

In which upcoming conferences or events may our readers meet you?

I will be presenting some of my biosensor work in the upcoming IEEE EMBS MNMC Conference

Above: Dr Aran supports a community in Africa by building a school

How do you spend your spare time? 

I love what I do so I can not define my spare time from my work time. I have recently co-founded a startup in digital diagnostics so that takes my weekend but I love it. I also paint when I feel like painting.  But I do run, swim and work out routinely after work and enjoy a variety of sports.  I have also started traveling to small villages around the world with my friends where we help in building schools.

Which profession would you choose if you were not a scientist?

I love painting and would have explored a career in art.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Have a vision. Sometimes we get lost in small career goals such as publishing but if you have a vision of what you are trying to accomplish you can define your career path, you will start working with the right people who support your vision, you will attend the right conferences and workshops for your career development and you will definitely be successful.

Lab on a Chip Issue 21

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Adriana San Miguel

Adriana San Miguel is an Assistant Professor in the Department of Chemical & Biomolecular Engineering at NC State University. She is part of the Synthetic and Systems Biology Chancellor´s Faculty Excellence Program. Her work combines engineering and biology and focuses on developing tools to perform high-throughput automated experiments with the model organism C. elegans. Her team uses these tools and this organism to better understand aging, stress, and the nervous system.

Adriana is originally from San Luis Potosi, Mexico. After receiving a BS in Chemical Engineering at the Monterrey Institute of Technology (ITESM) in 2005, she worked in the water treatment and cement industries for 2 years. She obtained a Ph.D. in Chemical Engineering from the Georgia Institute of Technology in 2011. She then took on a Postdoctoral Research position at Georgia Tech, and a second one at the Dana-Farber Cancer Institute in Boston. In 2013, Adriana was awarded the NIH K99 Pathway to Independence Award to study the mechanisms regulating synaptic plasticity and aging in the nematode C. elegans.

Read her Emerging Investigator Series article “A microfluidic platform for lifelong high-resolution and high throughput imaging of subtle aging phenotypes in C. elegansand find out more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on a microfluidic platform for high-resolution and high throughput imaging of aging phenotypes in C. elegans. How has your research evolved from your first article to this most recent article? 

We have previously been interested in developing systems for high-throughput imaging and analysis of subcellular features in C. elegans, and gained interest in quantitatively assessing how these change during aging. Aging studies pose several technical challenges that could not be addressed with previous microfluidic devices, thus our interest in developing a system capable of performing high-throughput analysis of aging phenotypes.

What aspect of your work are you most excited about at the moment?

I am excited about the possibility of doing systems biology enabled by microfluidics. Lab on chip approaches provide an excellent level of precision in experimental conditions which are unfeasible with traditional C. elegans techniques. Microfluidics also allows high-throughput studies that result in large data sets, and as a consequence, a need to perform unsupervised quantitative data analysis. When combined, these powerful approaches enable better understanding of biological processes from a systems perspective.

In your opinion, what are the challenges with using microfluidics for whole organism behaviour?

Behavioral studies are challenging, particularly because there is a large degree of variability within a population. Microfluidics can help by facilitating animal handling and ensuring the stimuli used is precise (in time, concentration, and localization). Although it is difficult to determine how representative a microfluidic environment (where animals navigate in 2D) resembles their natural 3D environment, microfluidic chips enable single animal tracking, thus increasing the confidence of noisy behavioral readouts.

What do you find most challenging about your research?

Our research requires the integration of several different fields. We develop microfluidic tools, and use them to answer fundamental biological questions. In addition, we use automation, image processing, machine learning, and analysis tools for the large data sets we acquire. Integrating all of these can certainly be challenging, but achieving fully integrated systems is what we find very motivating.

In which upcoming conferences or events may our readers meet you?

I typically attend the American Institute of Chemical Engineers Annual Meetings, as well as the International C. elegans meeting, among others.

How do you spend your spare time?

I enjoy working out every day, it is a necessary part of my routine. I also enjoy baseball, live music, reading, and spending time with family and friends.

Which profession would you choose if you were not a scientist?

I’d probably still be an Engineer, or maybe an artist of some sort.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Something I could suggest is to not be afraid of testing new ideas and methods or venturing into different fields. Although it can be challenging to develop something that is completely new, if it sparks your interest, give it a try. It is very rewarding and motivating to get something new working.


San Miguel Journal Front Cover

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Rebecca Pompano

We are delighted to introduce our latest Lab on a Chip Emerging Investigator, Rebecca Pompano.

Dr. Rebecca Pompano is an Assistant Professor in the Departments of Chemistry and Biomedical Engineering at the University of Virginia, and a member of the Beirne B. Carter Center for Immunology Research.  She completed a BS in Chemistry at the University of Richmond in 2005, and a PhD in 2011 at the University of Chicago, working in the laboratory of Dr. Rustem Ismagilov.  She completed a postdoc in the University of Chicago Department of Surgery, leading a collaboration between Dr. Joel Collier, a tissue engineer, and Dr. Anita Chong, an immunologist.  Since 2014, she has been a faculty member at UVA, where her research interests center on developing microfluidic and chemical assays to unravel the complexity of the immune response.  She received an Individual Biomedical Research Award from The Hartwell Foundation and the national 2016 Starter Grant Award from the Society of Analytical Chemists of Pittsburgh.  Recently, her lab was awarded an NIH R01 to develop hybrids of microfluidics and lymph node tissue to study inflammation.  In addition to her research, she is active in advocating for continued funding for education and biomedical research on Capitol Hill.

Read her Emerging Investigator Series article “User-defined local stimulation of live tissue through a movable microfluidic port” and find out more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on stimulation of live tissue through a movable microfluidic port. How has your research evolved from your first article to this most recent article?

My current research combines some seemingly disparate themes from my prior work.  My first article in graduate school used droplet microfluidics to study blood clotting, and I became fascinated with how spatial organization affects the function of complex biological systems. Later, I also worked on the physics of fluid flow in a reconfigurable SlipChip device… and both of these ideas make a comeback in this current paper!  Then in my postdoc, I had the fabulous opportunity to work in both a bioengineering lab and an immunology lab, studying the mechanism of action of a new non-inflammatory vaccine. The research in my lab now is really at the intersection of bioanalytical chemistry, bioengineering, and immunology.  We develop new tools to study the immune system and how it is organized. This particular paper offers a new technology to pick and choose where to deliver a drug or stimulant to a piece of live tissue, and we demonstrated it for lymph nodes, our favorite immune organ.

What aspect of your work are you most excited about at the moment?

I am very excited about the ideas we are pursuing, specifically that our tools to control and detect how tissue is organized might prove useful for other researchers.  As a chemist by training, I’m thrilled to collaborate with creative bioengineers and immunologists like Jennifer Munson (Virginia Tech) and Melanie Rutkowski (U Virginia) to work on inflammatory diseases and tumor immunology.  Seeing our chips at work in their labs is very rewarding.

In your opinion, what is the biggest advantage of using local stimulation over global stimulation for measuring tissue responses?

Local stimulation, by which I mean delivering fluid or a drug to one region of tissue, rather than bathing the entire sample in media, gives you the chance to ask unique questions about spatial organization.  For example, I envision using this microfluidic technique to determine whether a drug is more effective when delivered to one area of tissue than another, and then developing a nanoparticle that targets just the right region.  It can also be used to mimic local biological events, like diffusion of signals from a blood vessel, to determine how inflammation initiates and propagates through live tissue.

What do you find most challenging about your research?

Studying the immune system – its complexity is what I love about it, but it is challenging when the cells and tissue do exactly the opposite of what you expected!  This happens over and over when we ask a real biological question. I suppose it shows how much there is still to learn, and why new tools are so desperately needed to predict and control immunity.

In which upcoming conferences or events may our readers meet you?

I’m looking forward to MicroTAS in Taiwan this year. I also bounce around between Pittcon (analytical chemistry), the Society for Biomaterials annual meeting, and the annual AAI Immunology conference.  This fall I’ll be attending the BMES annual meeting (Biomedical Engineering Society) for the first time!  There is not yet a focused conference for immunoanalysis and immunoengineering, but I’m hoping one will form soon.

How do you spend your spare time?

A few years ago I would have said knitting… I had a great group of friends in graduate school who would get together to knit every week.  I still wear those socks and sweaters!  Now though, my husband Drew and I spend most of our free time playing together with our 2-year old, Jasper.  Sometimes I also go to Drew’s gigs to be a rock star’s spouse instead of a chemistry professor for a while.  He’s a bassist in several great bands in Charlottesville (check a few of them out – Pale Blue Dot and 7th Grade Girl Fight).

Which profession would you choose if you were not a scientist?

I almost went into science policy instead of academia. I seriously entertained the idea of working at USAID helping promote vaccines internationally, or working in a think tank to help guide health-related policies.  I’m still very passionate about the need for scientists to inform the public and our elected officials about the science underlying issues like health, education, and care of the environment.

Can you share one piece of career-related advice or wisdom with other early career scientists?

A former mentor recommended me the book, Ask For It, by Linda Babcock and Sara Laschever, and it completely changed how I operate.  I think many early career scientists could benefit from this book, which is about overcoming self-doubt to ask for what you really need. Although ostensibly written for women, in science I see so many men and women who could achieve something great with just a little confidence booster.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Jonathan Song and Shaurya Prakash

We are delighted to introduce our latest Lab on a Chip Emerging Investigators, Jonathan Song and Shaurya Prakash!

Jonathan Song is an Assistant Professor of Mechanical and Aerospace Engineering and Faculty Member of the Comprehensive Cancer Center at the Ohio State University (OSU).  He received his B.S. in Biomedical Engineering (BME) from Northwestern University and his Ph.D. in BME from the University of Michigan while working in the laboratory of Dr. Shu Takayama.  He completed a post-doctoral fellowship in the laboratory of Dr. Lance Munn in the Edwin L. Steele Laboratory at Massachusetts General Hospital and Harvard Medical School.  Since 2014, he has been a faculty member at OSU where he leads an interdisciplinary lab that applies microtechnology, principles from tissue engineering, and quantitative engineering analysis for studying the physical dynamics of tumor and vascular biology.  As a faculty member, he has received the NSF CAREER Award, the American Heart Association (AHA) Scientist Development Grant, and the OSU Comprehensive Cancer Center Pelotonia Junior Investigator Award.  His research has been funded by the National Institutes of Health (NIH), NSF, AHA, American Cancer Society (ACS), and the OSU Institute for Materials Research.

 

Shaurya Prakash is an Associate Professor of Mechanical & Aerospace Engineering and Infectious Diseases Institute (IDI) Thematic Program Director (for Prevention, Detection, and Therapies) at The Ohio State University (OSU). He graduated with a Ph.D. in Mechanical Engineering from the University of Illinois at Urbana-Champaign in 2007 and with a B.S. also in Mechanical Engineering from the University of Arkansas, Fayetteville in 2001. He has been on the faculty at The Ohio State University since fall 2009 where he directs the Microsystems and Nanosystems Laboratory. His research group focuses on designing, fabrication, and characterization of microsystems and nanosystems for applications in healthcare and engineering biology, water purification, and alternate and renewable energy. The main goals of their research are to: provide a scientific and technological solution to the pressing problems of a rapidly evolving modern society, and educate ourselves, our students, and the community we serve.

Read their Emerging Investigators Series article “Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model” and find out more about them in the interview below:

Your recent Emerging Investigator Series paper focuses on the role flow dynamics play in endothelial permeability in a microfluidic vessel bifurcation model. How has your research evolved from your first article to this most recent article?

Jonathan: This is a very nice question.  I have been thinking of flow dynamics and generally blood vessel remodeling and angiogenesis for quite a long time now and how microfluidics is a very powerful approach for probing this biology.  This interest had first crested during my post-doc where I published a paper in 2011 with my post-doc advisor Dr. Lance Munn in PNAS (https://doi.org/10.1073/pnas.1105316108), which was also highlighted very nicely by Lab on a Chip when this article was first published (DOI: 10.1039/c1lc90131a).  Through this work, I began to fully understand and appreciate how endothelial cells that line intact blood vessels have the capacity to integrate multiple extrinsic signals, both fluid mechanical and biochemical, to determine their angiogenesis fate.

This most recent article is a bit different and I consider a significant technical advancement because of the bifurcating vessel geometry produced by microfluidic system design.  Previous microsystems that I and others had primarily used were mostly straight or parallel channels that do not reconstitute how actual blood vessels branch into two daughter vessels.  My graduate student Ehsan Akbari came up with a clever design that we described in this latest article and enabled the results that we reported.

Shaurya: Over time, my research has evolved in many ways. My first few research articles on microscale reacting gas flows (microcombustion) in millimetre scale channels really started to establish many of the fundamental insights to reacting flows in a new type of configuration. Since then, observing the trends in my work, I see that my research has dealt with developing devices for understanding microfluidic and nanofluidic flows in a variety of configurations spanning a large range of applications from healthcare to energy and water. The goal has always been to develop science to enable new technology for solving problems important to modern society. This particular article on endothelial permeability follows (at least in my mind!) the natural extension of developing novel microfluidic systems and probing fundamental transport characteristics, which in this case happens to be for an important element in biology.

What aspect of your work are you most excited about at the moment?

Jonathan: Because of my training in microfluidics, I think I will always be excited about developing new systems and applying them to study a specific physiology.  However, at present I am particularly excited in studying the subcellular biophysics that orchestrate changes in endothelial remodeling and angiogenesis.  My lab is part of team along with my co-author on this article (Dr. Shaurya Prakash) and our Ohio State University (OSU) colleague Dr. Carlos Castro that was recently awarded an NIH R01 grant to specifically study this biology.  One of the experimental test beds for these studies is the microfluidic system that was first described in this article.

Shaurya: Our microfluidic platform provides us tremendous flexibility in evaluating bio-chemical-electrical-mechanical aspects of the endothelium. In particular, the ability to systematically evaluate effects of a variety of mechanical, electrical, and chemical stimuli to elicit biological responses from endothelial cells present an exciting avenue for future research that can probably help us to think about how we can truly begin to reach in the domain of ‘engineering biology’.

In your opinion, what is the biggest insight into the mechanisms that control vessel function presented by your research?

Jonathan: I believe it is that the impinging stagnation point flow at the base of our bifurcating microfluidic model (which we term in the article as bifurcated fluid flow or BFF) imparts a vessel stabilizing effect that is nitric oxide (NO) dependent.  This outcome has prompted multiple questions that we wish to pursue in the future that relate to vessel function and vessel maturation.

Shaurya: In this paper, the evaluation of time-dependent changes to endothelial permeability under a variety of systematically controlled local flow conditions (stagnation pressure at bifurcation point, local shear stress, and transvascular flow) showed that the mechanical forces acting on the endothelial cells biochemically-mediate endothelial remodeling processes. Here we reported the first observation of the time-dependent effect of stagnation pressure at the bifurcation point on the permeability thereby introducing stagnation flows at the base of vessel bifurcations as an important regulator of vessel permeability and suggest a mechanism by which local flow dynamics control vascular function in vivo through this in vitro study.

What do you find most challenging about your research?

Jonathan: I do like pretty much all aspects of my lab’s research and appreciate the challenges that are associated with working in interdisciplinary research.  What I do find particularly challenging at times is staying on top of the most cutting-edge literature in both the microtechnology and the biology related to my lab’s work.

Shaurya: In vivo biological responses are incredibly complex. The ability to carefully design devices to elucidate systematically the underlying biophysics through in vitro systems requires bringing together various skill sets and intellectual expertise from microfluidic device design, fabrication, and characterization to appropriate biological models followed by subsequent analysis and modeling. Integrating all these skills and expertise to one platform via an interdisciplinary team is both exciting and challenging.

In which upcoming conferences or events may our readers meet you?

Jonathan: My travel patterns have varied from year to year but I typically attend Experimental Biology (or FASEB) because of my involvement with the Microcirculatory Society.  I also typically attend the Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3) and the Biomedical Engineering Society (BMES) Annual Meeting.  I have also enjoyed attending the ASME NanoEngineering for Medicine and Biology (NEMB) conference.  I have not been as active in attending some of the disease specific conferences but intend to start doing so.

Shaurya: Our results are shared at many premier meetings like MicroTAS, Hilton Head Workshop, and other related meetings.

How do you spend your spare time?

Jonathan: My wife is trained as a social worker and is a big proponent of heath and wellness.  Thus, we try to stay active.  For example, we like to take our son biking with us.  He is only 2 years-old now so he is secured to seat on the front of my wife’s bike.  Admittedly, we typically just bike to our favorite local coffee shop.  I have also gotten into a little more extensive cycling, driven largely by my involvement with the OSU Comprehensive Cancer Center Pelotonia, which is an annual philanthropic bike race that has raised over $150 million for cancer research since it was started in 2008.  I have rode in every Pelotonia race since I started at OSU in 2014.

Shaurya:  Family time is essential to my success. Sharing my spare time with an incredibly supportive wife, amazing kids (and a wonderful fur-baby, dog) is time well spent. Any residual time after that is taken up by reading and working in my yard tending to my flower beds and lawn.

 Which profession would you choose if you were not a scientist?

Jonathan: Broadly speaking, probably something in in the business world.  However, if that were the case, I do not think I would be enjoying myself as much as I am now.  Working with my students is probably my favorite part of being an academic scientist.

Shaurya: This is a difficult question as being an engineer and scientist has been not just a profession but a way of life in thinking about solving problems that impact modern society. As a professor, I also enjoy teaching and working with young(er) minds to develop thought processes for solving problems. In my own younger days I was a fair athlete and so being a coach that would allow me to contribute to future generations as a mentor, teacher, and role-model to facilitate positive impact on our world would be an alternate life for me.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Jonathan: Invest in ideas that excite you the most.  Also, when pursuing collaborative projects, try to go for the ones that are both highly significant and mutually beneficial for all parties involved.

Shaurya: Choose and work on problems you truly care about – it shows in how the science is done and technology is developed and all the essential pieces behind impactful work like idea and concept development, writing and reading to compare against state-of-art, and eventually advancing the state-of-art. Therefore, pursuing problems that one is truly passionate about is important.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Edmond Young

We are delighted to introduce our latest Lab on a Chip Emerging Investigator, Edmond Young!

Dr. Edmond Young joined the Department of Mechanical & Industrial Engineering at the University of Toronto as an Assistant Professor in January 2013. He received his BASc (2001) and MASc (2003) in Mechanical Engineering at the University of British Columbia, and his PhD in Mechanical and Biomedical Engineering at the University of Toronto (2008). He was a postdoctoral fellow at the University of Wisconsin-Madison from 2009 to 2012, working at the Wisconsin Institute for Medical Research (WIMR). Professor Young’s research interests focus on the development of microscale technologies for cell biology applications, with emphasis on creating engineered models that mimic the cell and tissue microenvironments in both healthy and diseased animals. He received the Governor General’s Gold Medal and the Norman F. Moody Award for academic excellence in 2009, the MIE Early Career Teaching Award in 2015, the Ontario Early Researcher Award and Connaught New Investigator Award in 2016, and has been recognized as an Outstanding Reviewer for Lab on a Chip in both 2016 and 2017.

Read Edmond’s Emerging Investigator series paper “Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions” and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on lung airway-on-a-chip. How has your research evolved from your first article to this most recent article?

This is actually our first article on this specific project, and we’re excited to share these results with the Lab on a Chip readership, and others doing lung-on-a-chip research. I can think back to a few articles on thermoplastic microfabrication that our lab published (Guckenberger et al., Lab Chip, 2015; Wan et al., Lab Chip, 2015; Wan et al., JoVE, 2017), which really enabled us to fabricate our current airway-on-a-chip device consistently and repeatably. Developing reliable fabrication methods gave us the confidence needed to do these long-term cultures without constantly worrying about fabrication challenges. Now, our lab can fabricate and keep devices “in stock” well ahead of the biology experiments, and that in itself has been a bit of an evolution in our lab and also in the field.

What aspect of your work are you most excited about at the moment?

I’m most excited about the ongoing collaborations with engineers and doctors who are interested in using the platform for their own work. The technology still has a lot of room for development, but hearing how the system may be applied to lung research, and potentially other biology questions, is very exciting and motivating.

In your opinion, what is the biggest impact your developed lung airway-on-a-chip could have on our understanding of chronic lung diseases?

I think the biggest impact will be learning about the differences in biological responses of the various in vitro and ex vivo airway models, against which we plan to benchmark our model. The promise of organ-on-a-chip technology lies in its ability to mimic human tissue more accurately, and if our model can continue to advance as planned, we envision making new observations with our device that could not have been made with conventional models. And if we do find interesting differences, it will build on the growing evidence that traditional platforms such as 2D Transwells for coculture do not properly recapitulate the in vivo microenvironment. Many scientists will need to rethink their approach to in vitro experiments (if they haven’t done so already), and decide what models are most representative and most useful.

What do you find most challenging about your research?

The most challenging aspect of my research overall is trying to keep pace with the field. It is a rapidly evolving area of research with many amazing scientists and engineers making important contributions. Research takes time and patience, so another constant challenge is managing students who are just learning about the effort, resilience, and patience needed to make something work in research. But it’s well worth it when you see the results, both in terms of the research and in terms of student development.

In which upcoming conferences or events may our readers meet you?

I’ll be in Whistler from May 9-11, 2018 for an Emerging Technologies Conference, back in Toronto to co-chair the Ontario-on-a-Chip Symposium from May 24-25, 2018 (Lab on a Chip is our sponsor this year!), and plan to be at microTAS 2018 in Taiwan.

How do you spend your spare time?

I play a little tennis (seasonally in Toronto’s climate), but my latest source of amusement when I have spare time is my 11-month-old daughter Amelia. When she’s old enough, I will surely convince her to get into tennis (and hockey) so that her dad can live vicariously through her athletic pursuits! And if she happens to fall in love with research, I’d be pleased with that too.

Which profession would you choose if you were not a scientist?

I considered being an architect when I was younger, and I still get excited when I hear of the latest buildings and structures around the world that are being built. I like the technical engineering aspects of it, of course, but I also like how they define the skyline of big cities, and how art, culture, and engineering all come together in some of the world’s most beautiful architecture.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Surround yourself with great people. That applies to your friends, mentors, colleagues, and importantly, your students. And let them all challenge you so that your ideas are pressure-tested.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)