Archive for the ‘Hot Articles’ Category

∏-conjugated multinuclear metalladithiolenes and metalladithiolene clusters

Gigantic multinuclear transition metal cluster complexes have unique properties and reactivities.

Gigantic multinuclear transition metal cluster complexes have unique properties and reactivities.

Metalladithiolenes, along with their cluster complexes, are excellent compounds for studying multinucleation and electronic communication in mixed-valent states.  Electronic communication in mixed-valent states is particularly important for single-molecule magnets, enzymes and for the creation of molecular devices.  Ryota Sakamoto, Satoru Tsukada and Hiroshi Nishihara detail synthetic strategies for the successful multinucleation of metalladithiolenes in this Hot Perspective. 

Download it today…
Multinuclear metalladithiolenes: focusing on electronic communication in mixed-valent states
Ryota Sakamoto, Satoru Tsukada and Hiroshi Nishihara

Here are some of the authors’ other recent Dalton Transactions publications:

Synchronized motion and electron transfer of a redox-active rotor
Shoko Kume and Hiroshi Nishihara
Dalton Trans., 2011,40, 2299-2305
DOI: 10.1039/C0DT01084G

Conjugation of Au11 cluster with Cys-rich peptides containing the α-domain of metallothionein
Shinya Ariyasu, Akira Onoda, Ryota Sakamoto and Takeshi Yamamura
Dalton Trans., 2009, 3742-3747
DOI: 10.1039/B900570F

Development of a versatile synthesis method for trinuclear Co(III), Rh(III), and Ir(III) dithiolene complexes, and their crystal structures and multi-step redox properties
Yusuke Shibata, Baohua Zhu, Shoko Kume and Hiroshi Nishihara
Dalton Trans., 2009, 1939-1943
DOI: 10.1039/B815560G

Are you following us on Twitter? @DaltonTrans

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Confused porphyrins transport oxygen atoms

Unique cooperation has been observed between rhenium atoms and non-innocent N-confused porphyrin ligands in new oxorhenium(V) complexes.

The simplest porphyrin, porphine (left), and the N-confused porphyrin used to synthesize unique oxorhenium complexes.

Hiroyuki Furuta et al. have synthesised two new porphyrin oxorhenium(V) complexes which have been shown to be remarkably effective at oxygen atom transport. Through a catalytic process the oxygen atom from pyridine N-oxide can be transferred to PPh3 in a 97% yield, notably higher than that of some other rhenium(V) complexes. The authors propose that the reason for their success is the existence of a Re-C bond, believing that this bond is important for efficient oxygen transport.

Atom transport is at the heart of successful catalysis, and as usual nature has already beaten us to it. Galactose oxidase for example converts a primary alcohol into an aldehyde by transporting a hydrogen atom from one part of the enzyme to another. But if the oxygen atom transfer seen in these synthetic N-confused porphyrin oxorhenium(V) complexes can be extended to other systems, exciting advancements in the field of catalysis could be on the horizon.

l

To find out more about these exciting new complexes and the atom transport they facilitate, take a look at the full Dalton Transactions communication.

Cooperation between metal and ligand in oxygen atom transport by N-confused porphyrin oxorhenium(V) complexes
Takaaki Yamamoto, Motoki Toganoh and Hiroyuki Furuta

l

By Katie Renouf, Web Writer

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lewis Pair polymerization

In this HOT article, Chen et al. extend their previous work to present a combined experimental and computational investigation of Lewis Pair polymerization incorporating 11 Lewis acids and 10 achiral and chiral Lewis bases, for the polymerization of 12 different types of monomers.

Read more about the polymerization mechanism for FREE for 4 weeks at:

Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism
Yuetao Zhang, Garret M. Miyake, Mallory G. John, Laura Falivene, Lucia Caporaso, Luigi Cavallo and Eugene Y.-X. Chen
Dalton Trans., 2012, Advance Article
DOI: 10.1039/C2DT30427A

This article will form part of a themed issue on Frustrated Lewis Pairs guest edited by Douglas W. Stephan.  Other papers in this issue include:

Exchange chemistry of tBu3P(CO2)B(C6F5)2Cl
Rebecca C. Neu, Gabriel Ménard and Douglas W. Stephan

Fixation of carbon dioxide and related small molecules by a bifunctional frustrated pyrazolylborane Lewis pair
Eileen Theuergarten, Janin Schlösser, Danny Schlüns, Matthias Freytag, Constantin G. Daniliuc, Peter G. Jones and Matthias Tamm

[2.2]Paracyclophane derived bisphosphines for the activation of hydrogen by FLPs: application in domino hydrosilylation/hydrogenation of enones
Lutz Greb, Pascual Oña-Burgos, Adam Kubas, Florian C. Falk, Frank Breher, Karin Fink and Jan Paradies

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Theoretical study on proton relay at active site of nitogenase

This HOT paper by Ian Dance, from the University of New South Wales, reports on the mechanism of proton relay in nitrogenase enzymes.  The proton relay from the protein surface to a key sulfur atom of the FeMo-cofactor plays a core role in many of nitrogenase’s chemical mechanisms.

The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.

The water chain in nitrogenase is comparable with the purported proton pumping pathway of cytochrome c oxidase.

To read more about the detailed analysis of this mechanism you can download the full paper below…

The controlled relay of multiple protons required at the active site of nitrogenase
Ian Dance
Dalton Trans., 2012
DOI: 10.1039/C2DT30518F

Here are some of Ian Dance’s other recent Dalton Transactions publications:

Ramifications of C-centering rather than N-centering of the active site FeMo-co of the enzyme nitrogenase
Ian Dance
Dalton Trans., 2012,41, 4859-4865
DOI: 10.1039/C2DT00049K, Paper

Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide
Ian Dance
Dalton Trans., 2011,40, 6480-6489
DOI: 10.1039/C1DT10505A, Paper

How does vanadium nitrogenase reduce CO to hydrocarbons?
Ian Dance
Dalton Trans., 2011,40, 5516-5527
DOI: 10.1039/C1DT10240K, Paper

Mimicking nitrogenase
Ian Dance
Dalton Trans., 2010,39, 2972-2983
DOI: 10.1039/B922606K, Perspective
From themed issue Bioinspired catalysis

Are you following us on Twitter? @DaltonTrans

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hydrogenase Hydrogel

The ability of hydrogenase enzymes to reversibly catalyse the reduction of protons to form molecular hydrogen (H2) has attracted a great deal of research interest. Synthetic mimics of the hydrogenase active site could potentially replace expensive platinum catalysts in hydrogen fuel cells. Currently these mimics are significantly less efficient than the natural enzyme and they are oxygen sensitive. It is thought that by creating a stable peptide based enviroment around the mimic, the stability and efficiency could be improved.

Encapsulating a hydrogenase mimic into a hydrogel causes a restriction in isomerisation after photolysis

Researchers from the Hunt and Ulijn groups at the University of Strathclyde and  the Pickett group from the University of East Anglia have successfully encapsulated a [FeFe]-hydrogenase active site mimic into a dipeptide based hydrogelator. Their research has shown that there is a stark difference in the behaviour of the active site mimic in the gel phase compared to the solution phase. Experiments show that the mimic is significantly more stable in the gel phase and is less senstive to water and UV light which could potentially help to improve catalytic activity.

To find out more, read the full Daltons Transactions article…

Encapsulating [FeFe]-hydrogenase model compounds in peptide hydrogels dramatically modifies stability and photochemistry
Pim Wilhelmus, Johannes Maria Frederix,  Rafal Kania,  Joseph A Wright ,  Dimitrios A Lamprou,  Rein Ulijn,  C J Pickett and Neil T Hunt.

This article is part of the upcoming Dalton Discussion themed issue on Inorganic Photophysics and Photochemistry – Fundamentals and Applications

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Helicate or catenate?

The team expected the assembly to form a helicate rather than catenate structure

Predicting the structure of large self-assembled units can become very complicated very quickly. Yet it is important for the rational design of new structures to understand how they assemble so new arrangements can be designed, with functional and valuable properties.

This Hot Article from the Piguet group investigates whether a pyridyl-benzimidazole ligand forms a double stranded helicate or a catenated architecture. The thermodynamic approach used to investigate the structures throws up some interesting results.

Looking for the origin of the switch between coordination-captured helicates and catenates
Lilit Aboshyan-Sorgho, Martine Cantuel, Gérald Bernardinelli and Claude Piguet
DOI: 10.1039/C2DT30414G

Love inorganic chemistry? Follow us @DaltonTrans

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Thorium nanochemistry

Although it has been known for some time that highly charged cations such as Th(IV) are susceptible to hydrolysis and subsequent polymerization, very little has been know about the exact nature of such polymeric species until now. Rothe et al. shed new light on this using a combination of X-ray absorption fine structure (XAFS) spectroscopy, high energy X-ray scattering (HEXS) measurements, and quantum chemical calculations to yield the most favourable structure as two Th(IV) dimers linked by a central Th(IV) cation through hydroxide bridges. This should have important implications in geology and waste reprocessing amongst others.

The solution structure of the Th(IV)-hydroxo pentamer

Read more for FREE for 4 weeks at:
Thorium nanochemistry: the solution structure of the Th(IV)–hydroxo pentamer
Clemens Walther, Jörg Rothe, Bernd Schimmelpfennig and Markus Fuss
Dalton Trans., 2012, Advance Article
DOI: 10.1039/C2DT30243H 

Also of interest may be:
Infrared spectra and structures of the Th(OH)2 and Th(OH)4 molecules
Xuefeng Wang and Lester Andrews
Phys. Chem. Chem. Phys., 2005,7, 3834-3838
DOI: 10.1039/B509401A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New hard/soft donor ligand and its effect on the structure and redox behaviour of uranium complexes

David Emslie and colleagues from McMaster University describe the synthesis of a new rigid NSN-donor ligand as well as the preparation of uranium(IV) and uranium(III) complexes using this ligand and a previously prepared NON-donor ligand. A combination of cyclic voltammetry, DFT calculations and Atoms In Molecules calculations were used to compare U–SAR2 and U–OAr2 bonding and the results indicated increased covalency in U-SAR2 bonds that is probably due to the short U-S distances and tight C-S-U angles in the complexes.  This work will aid the advancement of approaches for lanthanide/actinide separation in nuclear fuel reprocessing as well as analytical actinide detection.

Rigid NON- and NSN-ligand complexes of tetravalent and trivalent uranium

Rigid NON- and NSN-ligand complexes of tetravalent and trivalent uranium.

Download the full paper below which is being published as part of an upcoming Dalton Transactions special issue, New Talent: the Americas…

Rigid NON- and NSN-ligand complexes of tetravalent and trivalent uranium: comparison of U–OAr2 and U–SAr2 bonding
Balamurugan Vidjayacoumar,  Sougandi Ilango,  Matthew J. Ray,  Terry Chu,  Kristopher B. Kolpin,  Nicholas R. Andreychuk,  Carlos A. Cruz,  David J. H. Emslie,  Hilary A. Jenkins and James F. Britten
Dalton Trans., 2012
DOI: 10.1039/C2DT30247K

You may also find this 2010 Dalton Transactions themed issue on New horizons in organo-f-block chemistry interesting.

follow-us-on-twitter1

Remember you can keep up to date with all the latest news in inorganic chemistry by following us on twitter and signing up to our e-alert service.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

When 3nm is huge

The packing structures of ionic crystals is an interesting field of study and this Hot Communication by Masaki Saito and Tomoji Ozeki is certainly no exception!

A Sr2+ salt of [MoVI72MoV60O372(CH3COO)30(H2O)72]42− exhibits a superposed kagome-lattice with huge channels whose diameters measure approximately 3.0 nm

Huge channels in a superposed kagome-lattice

The pair from the Ozeki Research Group have determined the crystal structures of a couple of interesting structures, one of which “exhibits a superposed kagome-lattice with huge channels whose diameters measure approximately 3.0 nm”.

To read more about these new compounds you can download the full paper below

Crystallization of a Keplerate-type polyoxometalate into a superposed kagome-lattice with huge channels
Masaki Saito and Tomoji Ozeki

You might also be interested in a few other papers on polyoxometalates, which along with this article will be published in our upcoming themed issue focusing on the topic.

Orientations of polyoxometalate anions on gold nanoparticles
Shelly Sharet, Ella Sandars, Yifeng Wang, Offer Zeiri, Alevtina Neyman, Louisa Meshi and Ira A. Weinstock

A co-crystal of polyoxometalates exhibiting single-molecule magnet behavior: the structural origin of a large magnetic anisotropy
Xikui Fang, Kendall McCallum, Harry D. Pratt III, Travis M. Anderson, Kevin Dennis and Marshall Luban

Want to keep up with inorganic chemistry? follow us @DaltonTrans

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Cryo-TEM reaveals POM-nanoparticle interactions

Ira Weinstock and colleagues from Ben Gurion University of the Negev have used cryogenic transmission electron microscopy to evaluate the interactions of polyoxometallates of different dimensions and shapes with gold nanoparticles.  The study revealed  a “face-down” orientation of the Pressyler ion  [NaP5W30O110]14–, and a “tilted” orientation for the Finke-Droege ion [P4W30Zn4(H2O)2O112]16–, contributing to important ongoing studies on the design of functional-POM protected metal nanoparticles.

"Face-down" orientation of Pressyler ion maximises interactions between cluster anion and Au surface.

"Face-down" orientation of Pressyler ion maximises interactions between cluster anion and Au surface.

To read more, download the communication now – it’s free to access.

Orientations of polyoxometalate anions on gold nanoparticles
Shelly Sharet,  Ella Sandars,  Yifeng Wang,  Offer Zeiri,  Alevtina Neyman,  Louisa Meshi and Ira A. Weinstock
Dalton Trans., 2012
DOI: 10.1039/C2DT30592E

The findings in the above HOT communication are due to be included in an upcoming themed issue on Polyoxometalates, guest edited by Leroy Cronin and Deliang Long.

Yifeng Wang and Ira Weinstock’s previous Dalton Transactions perspective might also be of interest….

Cation mediated self-assembly of inorganic cluster anion building blocks
Yifeng Wang and Ira A Weinstock
Dalton Trans., 2010, 39, 6143-6152
DOI: 10.1039/C0DT00166J

Are you following us on Twitter? @DaltonTrans

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)