Choose open access with PCCP

How can PCCP take your research further?

As a leading title in physical chemistry, PCCP gives you the opportunity to choose open access for your publications and make a greater impact globally. The PCCP Owner Societies – 19 chemistry, physical chemistry and physics societies from around the world – give further credibility to this journal’s open access publishing practices. We make it easier for you to reach and influence a wider readership, including those outside of academia.

PCCP has been recognised by cOAlition S as a Transformative Journal, which recognises our commitment to open access. Over the next few years, we will be transitioning to become a fully open access journal, while ensuring you have an exceptional publishing experience.

In this blog post, we will explain how PCCP and open access can transform the potential of your research and help you gain the recognition you deserve.

The benefits of open access

Open access publishing is the key to building a fairer, more equitable society. One where everyone can explore and benefit from discoveries, including researchers, funders, policymakers and the general public. Simply, it refers to the free, permanent and unrestricted online access to scholarly research for readers.

Open access can unlock your potential to make a bigger impact globally. We encourage you to choose this option for your next PCCP publication as it can significantly increase the discoverability of your work. Research tells us that open access publications in general are downloaded more than subscription-only content.

Other benefits of open access include:

  • better collaboration and career opportunities
  • making your work available outside academia
  • promoting fairness and inclusivity in the scientific community
  • boosting your citation potential

How open access works in PCCP

It’s easy and straightforward to choose open access for your publications in PCCP, and it’s important to remember that it does not compromise on quality. Every publication in PCCP, whether open access or not, undergoes rigorous peer review to uphold high standards. You can expect:

What’s next?

Choose open access for your next publication in PCCP – we are here every step of the way.

Have any questions? Visit our homepage or speak to a member of our editorial team.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Insightful Machine Learning for Physical Chemistry is now online and free to access until mid-December 2023.

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Insightful Machine Learning for Physical Chemistry is now online and free to access until mid-December 2023.

Machine learning has become an increasingly powerful tool for providing insights into applications such as the design of materials based on soft and hard matter and for improving the accuracy of ground- and excited-state simulations.

Guest Edited by Isaac Tamblyn, Pavlo O. Dral, Olexandr Isayev and Aurora Clark, this collection reviews contributions from various fields with a focus on design principles for new materials, learning many-body correlations, multi-scale physical chemistry, and uncovering phenomena for excited matter.

Read the full issue online
It includes:

Editorial
Themed collection on Insightful Machine Learning for Physical Chemistry
Aurora E. Clark, Pavlo O. Dral, Isaac Tamblyn and Olexandr Isayev
Phys. Chem. Chem. Phys., 2023, 25, 22563-22564. DOI: 10.1039/D3CP90129G

Perspective
Machine learning in computational chemistry: interplay between (non)linearity, basis sets, and dimensionality
Sergei Manzhos, Shunsaku Tsuda and Manabu Ihara
Phys. Chem. Chem. Phys., 2023, 25, 1546-1555. DOI: 10.1039/D2CP04155C

Paper
Transfer learning for chemically accurate interatomic neural network potentials
Viktor Zaverkin, David Holzmüller, Luca Bonfirraro and Johannes Kästner
Phys. Chem. Chem. Phys., 2023, 25, 5383-5396. DOI: 10.1039/D2CP05793J

Paper
The principal component analysis of the ring deformation in the nonadiabatic surface hopping dynamics
Yifei Zhu, Jiawei Peng, Xu Kang, Chao Xu and Zhenggang Lan
Phys. Chem. Chem. Phys., 2022, 24, 24362-24382. DOI: 10.1039/D2CP03323B

Paper
Solvent selection for polymers enabled by generalized chemical fingerprinting and machine learning
Joseph Kern, Shruti Venkatram, Manali Banerjee, Blair Brettmann and Rampi Ramprasad
Phys. Chem. Chem. Phys., 2022, 24, 26547-26555. DOI: 10.1039/D2CP03735A

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ABS Trust: Gordon F. Kirkbright and Edward Steers Bursary Awards, 2023

The Gordon F. Kirkbright bursary award is a prestigious annual award that assists a promising early career scientists of any nation to attend a recognised scientific meeting or visit a place of learning. The fund for this bursary was established in 1985 as a memorial to Professor Gordon Kirkbright in recognition of his contributions to analytical spectroscopy and to science in general.

Owing to the generosity of one of our former trustees, an eminent atomic spectroscopist, Professor Edward B.M. Steers, we are now able to award an annual Edward Steers bursary, in addition to the long standing Gordon Kirkbright bursary, to similarly assist a promising early scientist engaged in or utilising analytical spectroscopic techniques. The ABS Trust defines early career as being either a student, or an employee in a non-tenured academic post or in industry, within 5 years of award of PhD excluding career breaks. The same conditions apply to each bursary.

Applications are invited for both the 2023 Gordon Kirkbright Bursary and the 2023 Edward Steers Bursary. 

Although both funds are administered by the ABS Trust, the Kirkbright award is not restricted to spectroscopists, but is open to all involved with or utilising analytical science-based techniques.

Applicants to complete the following online form by the deadline for completion is 30th November 2023

Visit the ABS Trust website for more details or contact abstrustuk@gmail.com with any questions

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed collection Computational Modelling as a Tool in Catalytic Science is now online and free to access until the end of October 2023

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed collection Computational Modelling as a Tool in Catalytic Science is now online and free to access until the end of October 2023.

Computational modelling techniques now play a vital role in catalytic science. Atomic and molecular level simulation is used widely and increasingly routinely in modelling structural and mechanistic properties, especially those of the active site. Computational catalysis embraces a wide range of techniques, which at the molecular level include both static and dynamical simulations based on interatomic potentials and quantum mechanical methods using both periodic and embedded cluster techniques. The field is advancing rapidly owing to developments in technique and the continuing growth in the capability of computer hardware; and importantly it is becoming increasingly predictive with modelling guiding rather than simply explaining experiment.

Guest Edited by Professor Richard Catlow (University College London and Cardiff University), Dr Matthew Quesne (Cardiff University), and Dr Arunabhiram Chutia (University of Lincoln), this collection provides a survey of the state-of-the-art in the field.

Read the full collection online
It includes:

Editorial
Computational modelling in catalytic science
C. Richard A. Catlow, Arunabhiram Chutia, and Matthew G. Quesne
Phys. Chem. Chem. Phys., 2023, Advance Article. DOI: 10.1039/D3CP90127K

Review
The application of QM/MM simulations in heterogeneous catalysis
Gabriel Adrian Bramley, Owain Tomos Beynon, Pavel Viktorovich Stishenko, and Andrew James Logsdail
Phys. Chem. Chem. Phys., 2023, 25, 6562-6585. DOI: 10.1039/D2CP04537K

Perspective
Multiscale QM/MM modelling of catalytic systems with ChemShell
Y. Lu, T. W. Keal, et al.
Phys. Chem. Chem. Phys., 2023, Advance Article. DOI: 10.1039/D3CP00648D

Paper
The catalytic hydrogenolysis of compounds derived from guaiacol on the Cu (111) surface: mechanisms from DFT studies
Destiny Konadu, Caroline R. Kwawu, Elliot S. Menkah, Richard Tia, Evans Adei, and Nora de Leeuw
Phys. Chem. Chem. Phys., 2023, 25, 6247-6252. DOI: 10.1039/D2CP04352A

Paper
Pt38 as a promising ethanol catalyst: a first principles study
Vagner Alexandre Rigo and Francesca Baletto
Phys. Chem. Chem. Phys., 2023, 25, 4649-4655. DOI: 10.1039/D2CP04323H

Paper
Stereodynamics effects in grazing-incidence fast-molecule diffraction
M. del Cueto, A. S. Muzas, F. Martín, and C. Díaz
Phys. Chem. Chem. Phys., 2022, 24, 19541-19551. DOI: 10.1039/D2CP02109A

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Celebrating 25 years of PCCP

Physical Chemistry Chemical Physics (PCCP) is a journal for high quality research in physical chemistry, chemical physics and biophysical chemistry. As PCCP is co-owned by 19 chemistry, physical chemistry and physics societies from around the world, you can reach a wider readership when you publish in this journal. Each Owner Society is committed to delivering a trusted and valuable experience to the scientific community.

This year, we’re celebrating the 25th volume of PCCP. A lot has changed since our first issue – PCCP was launched by four international chemistry and physical chemistry societies, but over the years, another 15 learned societies joined this journal. In 2023, our community is now represented by an internationally renowned editorial board, comprising of 14 associate editors carefully selected by our 19 Owner Societies. With their support, we have published 45,000 articles from over 120 countries to date.

A quick look at the difference from 1999 to 2023:

“I was thrilled to be involved in the launch of PCCP and to be working in partnership with the four founding societies and their member communities. At launch, there was much excitement for PCCP to become the one umbrella journal for the publication of the best research in all fields within physical chemistry and chemical physics. From the very first issue, PCCP received amazing support from authors, reviewers and readers, and I am proud to have had a role in helping the community to establish this unique and multidisciplinary journal.”
Susan Weatherby, Launch Editor for PCCP in 1999

What does the future hold?

PCCP has always been a home for work from across the breadth of physical chemistry, chemical physics and biophysical chemistry, in both experimental and theoretical fields. Based on our experience with computational and quantum chemistry, PCCP now warmly welcomes research in the areas of quantum computing, machine learning, data science and artificial intelligence.

You can now read and publish tutorial reviews in PCCP. Learn about the first PCCP tutorial review, written by 2023 Tilden Prize winner Julie MacPherson and colleagues. If you have a great idea for a tutorial review, please visit our homepage for further information.

We have recently published some exceptional themed collections, and we have open calls for new themed collections on topics from “Molecular dynamics in the gas phase” through to “Physical chemistry of the energy transition”.

In 2024, we invite you to join us for the PCCP 25th anniversary symposium in Amsterdam on 1–2 May. The programme features internationally renowned speakers from our editorial and advisory boards, as well as the PCCP Owner Societies. It will be a chance for you to network with the community, be part of some exciting discussions, and celebrate 25 years of PCCP.

Discover more about PCCP in our video and explore our latest issue.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Stability and properties of new-generation metal and metal-oxide clusters down to subnanometer scale is now online and free to access until the end of September 2023

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Stability and properties of new-generation metal and metal-oxide clusters down to subnanometer scale is now online and free to access until the end of September 2023.

This collection brings together theory, fundamental-oriented research in vacuum and superfluid helium droplets, including metal clusters of astrochemical relevance, and the most applied-oriented research of metal and metal oxide clusters in solution, covering subnano- and nano-meter ranges.

Guest Edited by María Pilar de Lara-Castells, Cristina Puzzarini, Stefan Vajda, M. Arturo López-Quintela and Vlasta Bonacic-Koutecky, this collection reviews the latest advances in the field of metal and metal-oxide clusters, down to the subnanometer scale.

Read the full issue online
It includes:

Editorial
Stability and properties of new-generation metal and metal-oxide clusters down to subnanometer scale
María Pilar de Lara-Castells, Cristina Puzzarini, Vlasta Bonačić-Koutecký, M. Arturo López-Quintela and Stefan Vajda
Phys. Chem. Chem. Phys., 2023, 25, 15081-15084. DOI: 10.1039/D3CP90063K

Perspective
Gas-phase synthesis of nanoparticles: current application challenges and instrumentation development responses
Panagiotis Grammatikopoulos, Theodoros Bouloumis and Stephan Steinhauer
Phys. Chem. Chem. Phys., 2023, 25, 897-912. DOI: 10.1039/D2CP04068A

Review Article
Exploring the materials space in the smallest particle size range: from heterogeneous catalysis to electrocatalysis and photocatalysis
Juraj Jašík, Alessandro Fortunelli and Štefan Vajda
Phys. Chem. Chem. Phys., 2022, 24, 12083-12115. DOI: 10.1039/D1CP05677H

Communication
Connection of Ru nanoparticles with rich defects enables the enhanced electrochemical reduction of nitrogen
Xingrui Tang, Xiuquan Tian, Li Zhou, Fan Yang, Rong He, Xu Zhao and Wenkun Zhu
Phys. Chem. Chem. Phys., 2022, 24, 11491-11495. DOI: 10.1039/D2CP00340F

Paper
First principles insights into the relative stability, electronic and catalytic properties of core–shell, Janus and mixed structural patterns for bimetallic Pd–X nano-alloys (X = Co, Ni, Cu, Rh, Ag, Ir, Pt, Au)
Soumendu Datta, Aishwaryo Ghosh and Tanusri Saha-Dasgupta
Phys. Chem. Chem. Phys., 2023, 25, 4667-4679. DOI: 10.1039/D2CP04342D

Paper
Catalytic activity of 1D chains of gold oxide on a stepped gold surface from density functional theory
Shikun Li, Okikiola Olaniyan, Lenard L. Carroll, Marcus Bäumer and Lyudmila V. Moskaleva
Phys. Chem. Chem. Phys., 2022, 24, 28853-28863. DOI: 10.1039/D2CP03524C

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Festschrift Wolfgang E. Ernst: Electronic & Nuclear Dynamics in Molecules, Clusters, and on Surfaces themed collection is now online and free to access until the beginning of September 2023

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Festschrift Wolfgang E. Ernst: Electronic & Nuclear Dynamics in Molecules, Clusters, and on Surfaces themed collection is now online and free to access until the beginning of September 2023.

This Festschrift themed collection is dedicated to the recent studies of electronic and nuclear features of molecules and new materials, their structure and dynamics, interplay and coupling mechanisms in honour of Professor Wolfgang Ernst’s 70th birthday. The understandings of structural and dynamic properties of molecular systems, paired with new experimental possibilities in the time domain and femtosecond chemistry, help in the development of technologies in fields such as renewable energies and energy conversion, data processing and storage, or chemical sensing and catalysis.

Guest Edited by Martina Havenith, Martin Sterrer, Andreas W. Hauser and Markus Koch, this collection reviews the very recent achievements in electronic and nuclear dynamics in molecules, ions and on surfaces.

 

 

Read the full issue online

It includes:

Editorial
Festschrift for Wolfgang E. Ernst – electronic and nuclear dynamics and their interplay in molecules, clusters and on surfaces
Andreas W. Hauser, Martina Havenith, Markus Koch and Martin Sterrer
Phys. Chem. Chem. Phys., 2023, 25, 11880-11882. DOI: 10.1039/D3CP90052E

Review Article
Perspectives on weak interactions in complex materials at different length scales
J. Fiedler, K. Berland, J. W. Borchert, R. W. Corkery, A. Eisfeld, D. Gelbwaser-Klimovsky, M. M. Greve, B. Holst, K. Jacobs, M. Krüger, D. F. Parsons, C. Persson, M. Presselt, T. Reisinger, S. Scheel, F. Stienkemeier, M. Tømterud, M. Walter, R. T. Weitz and J. Zalieckas
Phys. Chem. Chem. Phys., 2023, 25, 2671-2705. DOI: 10.1039/D2CP03349F

Paper
A neural network potential energy surface and quantum dynamics studies for the Ca+(2S) + H2 → CaH+ + H reaction
Zijiang Yang, Hanghang Chen, Ye Mao and Maodu Chen
Phys. Chem. Chem. Phys., 2022, 24, 19209-19217. DOI: 10.1039/D2CP02711A

Paper
Ultrafast proton transfer of the aqueous phenol radical cation
Muhammad Shafiq Bin Mohd Yusof, Hongwei Song, Tushar Debnath, Bethany Lowe, Minghui Yang and Zhi-Heng Loh
Phys. Chem. Chem. Phys., 2022, 24, 12236-12248. DOI: 10.1039/D2CP00505K

Paper
Relaxation dynamics in excited helium nanodroplets probed with high resolution, time-resolved photoelectron spectroscopy
A. C. LaForge, J. D. Asmussen, B. Bastian, M. Bonanomi, C. Callegari, S. De, M. Di Fraia, L. Gorman, S. Hartweg, S. R. Krishnan, M. F. Kling, D. Mishra, S. Mandal, A. Ngai, N. Pal, O. Plekan, K. C. Prince, P. Rosenberger, E. Aguirre Serrata, F. Stienkemeier, N. Berrah and M. Mudrich
Phys. Chem. Chem. Phys., 2022, 24, 28844-28852. DOI: 10.1039/D2CP03335F

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Recent Advances in Modelling Core-Electron Spectroscopy is now online and free to access until the end of July 2023

 

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Recent Advances in Modelling Core-Electron Spectroscopy is now online and free to access until the end of July 2023.

Core electron spectra have been extremely useful probes of the local atomic and electronic structure and dynamics of materials, due to their local, element-specific nature. These phenomena include X-ray photoemission (XPS), X-ray absorption (XAS), X-ray emission (XES), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), and resonant inelastic X-ray scattering (RIXS). The theoretical treatment of these processes requires diverse modelling techniques for excited states, dynamic response, and thermodynamic behavior which are material-specific and capture the effects of many-electron interactions and inelastic processes. In recent years, there has been a rapid development of these approaches which have become highly quantitative, driven in part by complementary advances in computation and experimental precision.

 

Guest edited by John J. Rehr, David Prendergast and Johannes Lischner, this collection showcases research in all aspects of the theory and computational techniques relevant to core-electron spectroscopy.

Read the full issue online
It includes:

Editorial
Recent advances in modelling core-electron spectroscopy
John J. Rehr, David Prendergast and Johannes Lischner
Phys. Chem. Chem. Phys., 2023, 25, 7572-7573. DOI: 10.1039/D3CP90051G

Paper
Disentangling the resonant Auger spectra of ozone: overlapping core-hole states and core-excited state dynamics
Bruno Nunes Cabral Tenorio, Klaus B. Møller, Piero Decleva and Sonia Coriani
Phys. Chem. Chem. Phys., 2022, 24, 28150-28163. DOI: 10.1039/D2CP03709B

Paper
Revisiting the K-edge X-ray absorption fine structure of Si, Ge–Si alloys, and the isoelectronic series: CuBr, ZnSe, GaAs, and Ge
E. L. Shirley and J. C. Woicik
Phys. Chem. Chem. Phys., 2022, 24, 20742-20759. DOI: 10.1039/D2CP00912A

Paper
Beyond structural insight: a deep neural network for the prediction of Pt L2/3-edge X-ray absorption spectra
Luke Watson, Conor D. Rankine and Thomas J. Penfold
Phys. Chem. Chem. Phys., 2022, 24, 9156-9167. DOI: 10.1039/D2CP00567K

Paper
Simple renormalization schemes for multiple scattering series expansions
Aika Takatsu, Sylvain Tricot, Philippe Schieffer, Kevin Dunseath, Mariko Terao-Dunseath, Keisuke Hatada and Didier Se´billeau
Phys. Chem. Chem. Phys., 2022, 24, 5658-5668. DOI: 10.1039/D1CP05530E

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The 2023 PCCP Emerging Investigator Lectureship is awarded to Prof. Li-Chiang Lin!

The 2023 PCCP Emerging Investigator Lectureship is awarded to Prof. Li-Chiang Lin!

The Lectureship is awarded to recognise and support emerging scientists working in physical chemistry, chemical physics or biophysical chemistry, who are making outstanding contributions to their field, at an early stage of their careers.

 

In 2022, nominations were open to all and were made by leading researchers from around the world. After careful deliberation, Prof. Li-Chiang Lin (National Taiwan University) was selected as the 2023 recipient by the PCCP Editorial Board. In addition, a number of the outstanding shortlisted nominees will be invited to contribute to an Emerging Investigators themed collection, which will be published in 2023.

 

Li-Chiang Lin was born in Taiwan. He received his Ph.D. degree in Chemical Engineering from the University of California-Berkeley and conducted postdoctoral research at Massachusetts Institute of Technology in Materials Science and Engineering. Before he moved back to Taiwan, he was formerly an Assistant Professor at Delft University of Technology, followed by an appointment as an Assistant Professor and the inaugural holder of the Umit S. Ozkan Professorship at the Ohio State University (OSU). He is currently an Associate Professor in the Department of Chemical Engineering at National Taiwan University (NTU, 2021 – present). He also holds an Adjunct Associate Professor position in the William G. Lowrie Department of Chemical and Biomolecular Engineering at OSU. To date, he has published more than 100 peer-reviewed research articles.

 

Prof. Lin has received several awards, such as the 2022 Outstanding Research Award for Young Professors from the LCY Education Foundation, 2022 Young Scholar Award from the Taiwan Membrane Society, 2021 Yushan Young Scholar Award, I&EC Research 2021 Class of Influential Researchers – The Americas, 2021 AIChE Futures, 2020 Lumley Research Award from OSU, and the 2019 Triennial Award for Excellence in Publications from the International Adsorption Society. He has also received the highest teaching honour from OSU, the 2021 Alumni Award for Distinguished Teaching.

 

“Our group at National Taiwan University applies and develops computational methods to study nanoporous materials including, but are not limited to, zeolites and metal-organic frameworks for their potential in energy-related applications such as gas separation, storage, and liquid purification. By employing state-of-the-art molecular simulations, density functional theory calculations, and machine learning techniques, we seek to identify promising candidates as well as to shed light on the structure-property relationship for rational design of materials with an improved performance. We also work on the development of new methods for accelerated simulations with a better accuracy.”

For more information about the Lin Group, please visit https://sites.google.com/view/lin-research-group

 

As part of the Lectureship Prof. Li-Chiang Lin will be awarded a travel bursary of £1000 to attend and present at a leading international event in 2023, where he will be presented his Lectureship award. Prof. Li-Chiang Lin has also been invited to contribute a Perspective article to PCCP.

Many congratulations to Prof. Li-Chiang Lin on behalf of the PCCP Editorial Board, Office and Ownership Societies.

Nominations for the 2024 PCCP Emerging Investigator Lectureship will open this month, keep up to date with latest journal news on the blogTwitternewsletter and e-TOC alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Ions, electrons, coincidences and dynamics: Festschrift for John H.D. Eland is now online and free to access until the end of June 2023

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Ions, electrons, coincidences and dynamics: Festschrift for John H.D. Eland is now online and free to access until the end of June 2023.

John H.D.Eland has been a key player in many developments of ionisation of atoms, molecules and clusters. He is particularly recognised as a pioneer of double photoionisation and ionisation-induced phenomena and dynamics. John has remained at the forefront of this growing field over the past two decades, and this Festschrift issue celebrates his 80th birthday to honour his contribution and achievements to the field.

Guest Edited by Professors Raimund Feifel, Majdi Hochlaf and Stephen Price this collection reviews the very recent achievements and progress in our understanding of physics and chemistry associated by ionisation.

Read the full issue online
It includes:

Editorial
Ions, electrons, coincidences and dynamics
Raimund Feifel, Majdi Hochlaf, Stephen Price
Phys. Chem. Chem. Phys.,
2023, 25, 5911-5912. DOI: 10.1039/D2CP90239G

Perspective
Probing combustion and catalysis intermediates by synchrotron vacuum ultraviolet photoionization molecular-beam mass spectrometry: recent progress and future opportunities
Zhongyue Zhou, Jiuzhong Yang, Wenhao Yuan, Zhandong Wang, Yang Pan and Fei Qi
Phys. Chem. Chem. Phys., 2022, 24, 21567-21577. DOI: 10.1039/D2CP02899A

Review
Photoelectron-photoion(s) coincidence studies of molecules of biological interest
P. Bolognesi and L. Avaldi
Phys. Chem. Chem. Phys., 2022, 24, 22356-22370. DOI: 10.1039/D2CP03079A 

Paper
Site-dependent nuclear dynamics in core-excited butadiene
Shabnam Oghbaiee, Mathieu Gisselbrecht, Noelle Walsh, Bart Oostenrijk, Joakim Laksman, Erik P. Månsson, Anna Sankari, John H. D. Eland and Stacey L. Sorensen
Phys. Chem. Chem. Phys., 2022, 24, 28825-28830. DOI: 10.1039/D2CP03411E

Paper
The kinetic energy of PAH dication and trication dissociation determined by recoil-frame covariance map imaging
Jason W. L. Lee, Denis S. Tikhonov, Felix Allum, Rebecca Boll, Pragya Chopra, Benjamin Erk, Sebastian Gruet, Lanhai He, David Heathcote, Mehdi M. Kazemi, Jan Lahl, Alexander K. Lemmens, Donatella Loru, Sylvain Maclot, Robert Mason, Erland Müller, Terry Mullins, Christopher Passow, Jasper Peschel, Daniel Ramm, Amanda L. Steber, Sadia Bari, Mark Brouard, Michael Burt, Jochen Küpper, Per Eng-Johnsson, Anouk M. Rijs, Daniel Rolles, Claire Vallance, Bastian Manschwetus and Melanie Schnell
Phys. Chem. Chem. Phys., 2022, 24, 23096-23105. DOI: 10.1039/D2CP02252D

Paper
Fragmentation of interstellar methanol by collisions with He˙+: an experimental and computational study
Vincent Richardson, Emília Valença Ferreira de Aragão, Xiao He, Fernando Pirani, Luca Mancini, Noelia Faginas-Lago, Marzio Rosi, Luca Matteo Martini and Daniela Ascenzi
Phys. Chem. Chem. Phys., 2022, 24, 22437-22452. DOI: 10.1039/D2CP02458F

Paper
Asymptotic behavior of the electron-atom Compton profile due to the intramolecular H-atom motion in H2
Yuuki Onitsuka, Yuichi Tachibana and Masahiko Takahashi
Phys. Chem. Chem. Phys., 2022, 24, 19716-19721. DOI: 10.1039/D2CP02461F

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)