Archive for the ‘Themed Issue’ Category

Festschrift for Peter Toennies – New horizons in the dynamics of molecules: from gases to surfaces PCCP themed issue now online and free to access

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Festschrift for Peter Toennies – New horizons in the dynamics of molecules: from gases to surfaces is now online and free to access until the beginning of July 2021.

This themed issue is in honour of Professor Jan-Peter Toennies on the occasion of his 90th birthday.

Professor Toennies is a very well-known physical chemist, Emeritus Director of the Max Planck Institute für Strömungsforschung (now the MPI für Dynamik und Selbstorganisation) in Göttingen, and is still actively publishing even today. A few of his fields of research are molecular beams scattering in the gas phase, chemical reactions, atomic and molecular beams scattering from surfaces, surface structure and dynamics, He dimers, small clusters and nanodroplets.

Guest Edited by Professor Giorgio Benedek, Professor Joseph R. Manson and Professor Salvador Miret-Artés, this collection includes work closely related to Professor Toennies’ fields of research.

 

Read the full issue online
It includes:

Editorial
Festschrift for Peter Toennies – New horizons in the dynamics of molecules: from gases to surfaces
Giorgio Benedek, Joseph R. Manson and Salvador Miret-Artés
Phys. Chem. Chem. Phys., 2021, 23, 7523-7524. DOI: 10.1039/D1CP90026A

Profile
Jan Peter Toennies: an ebullient serendipitous adventurer
Bretislav Friedrich and Dudley Herschbach
Phys. Chem. Chem. Phys., 2021, 23, 7525-7540. DOI: 10.1039/D0CP90251A

Perspective
Metal clusters synthesized in helium droplets: structure and dynamics from experiment and theory
Wolfgang E. Ernst and Andreas Hauser
Phys. Chem. Chem. Phys., 2021, 23, 7553-7574. DOI: 10.1039/D0CP04349D

Paper
Normal and off-normal incidence dissociative dynamics of O2(v,J) on ultrathin Cu films grown on Ru(0001)
J. G. Fallaque, M. Ramos, H. S. Busnengo, F. Martín and C. Díaz
Phys. Chem. Chem. Phys., 2021, 23, 7768-7776. DOI: 10.1039/D0CP03979A

Paper
Alkali metal adsorption on metal surfaces: new insights from new tools
Arjun Raghavan, Louie Slocombe, Alexander Spreinat, David J. Ward, William Allison, John Ellis, Andrew P. Jardine, Marco Sacchi and Nadav Avidor
Phys. Chem. Chem. Phys., 2021, 23, 7822-7829. DOI: 10.1039/D0CP05365A

Paper
A nuclear spin and spatial symmetry-adapted full quantum method for light particles inside carbon nanotubes: clusters of 3He, 4He, and para-H2
María Pilar de Lara-Castells and Alexander O. Mitrushchenkov
Phys. Chem. Chem. Phys., 2021, 23, 7908-7918. DOI: 10.1039/D0CP05332E

 

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

PCCP Quantum Computing and Quantum Information Storage themed collection now online!

PCCP Quantum Computing and Quantum Information Storage themed collection now online!

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed collection Quantum Computing and Quantum Information Storage is now online and free to access until the end of June 2021.

Quantum computing and information storage promise to revolutionize our information technology. Some basic theory of quantum computing has been established over the past two decades and researchers are on the cusp of quantum supremacy for truly useful systems. Yet, for quantum computing to become a reality we need to find a practical physical platform for realizing qubits with enough fidelity and depth to solve important problems. At present it is not clear what platform will succeed at this.

Guest Edited by Professor John Doyle, Professor Anna Krylov and Professor Kang-Kuen Ni, this collection highlights physical chemistry and chemical physics aspects of quantum computing and quantum information storage. We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Read the full collection online

It includes:

Editorial
Quantum Computing and Quantum Information Storage
Anna I. Krylov, John Doyle and Kang-Kuen Ni
Phys. Chem. Chem. Phys., 2021, 23, 6341-6343. DOI: 10.1039/D1CP90024B

Paper
In search of molecular ions for optical cycling: a difficult road
Maxim V. Ivanov, Thomas-C. Jagau, Guo-Zhu Zhu, Eric R. Hudson and Anna I. Krylov
Phys. Chem. Chem. Phys., 2020, 22, 17075-17090.  DOI: 10.1039/D0CP02921A

Paper
First-principles studies of strongly correlated states in defect spin qubits in diamond
He Ma, Nan Sheng, Marco Govoni and Giulia Galli
Phys. Chem. Chem. Phys., 2020, 22, 25522-25527. DOI: 10.1039/D0CP04585C

Paper
Coherent manipulation of the internal state of ultracold 87Rb133Cs molecules with multiple microwave fields
Jacob A. Blackmore, Philip D. Gregory, Sarah L. Bromley and Simon L. Cornish
Phys. Chem. Chem. Phys., 2020, 22, 27529-27538. DOI: 10.1039/D0CP04651E

Paper
Magnetic anisotropy in YbIII complex candidates for molecular qubits: a theoretical analysis
Martín Amoza, Silvia Gómez-Coca and Eliseo Ruiz
Phys. Chem. Chem. Phys., 2021, 23, 1976-1983. DOI: 10.1039/D0CP05422D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Quantum Theory: The Challenge of Transition Metal Complexes is now online and free to access until May 2021

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed collection Quantum Theory: The Challenge of Transition Metal Complexes is now online and free to access until May 2021.

This collection aims at promoting the power of quantum theory at deciphering electronic structure, bonding, nuclear relaxation, (photo-) chemical reactivity, catalytic and enzymatic activities of transition metal complexes.

By exploring the intimacy of matter, particularly complex in coordination chemistry, quantum theory does not only provide accurate structural understanding but also in-depth knowledge of the processes that control primary functions, either at the molecular scale or in specific environments.

Guest Edited by Professor Chantal Daniel, Professor Leticia González and Professor Frank Neese, this collection contributes to stimulating discussions in the quest to find fundamental answers at the frontier between hard and life sciences involving transition metal complexes.

Read the full issue online
It includes:

Editorial
Quantum Theory: The Challenge of Transition Metal Complexes
Chantal Daniel, Leticia González and Frank Neese
Phys. Chem. Chem. Phys., 2021, 23, 2533-2534. DOI: 10.1039/D0CP90278K

Perspective
Coupled transport of electrons and protons in a bacterial cytochrome c oxidase—DFT calculated properties compared to structures and spectroscopies
Louis Noodleman, Wen-Ge Han Du, Duncan McRee, Ying Chen, Teffanie Goh and Andreas W. Götz
Phys. Chem. Chem. Phys., 2020, 22, 26652-26668. DOI: 10.1039/D0CP04848H

Paper (Front Cover)
Accurate and rapid prediction of pKa of transition metal complexes: semiempirical quantum chemistry with a data-augmented approach
Vivek Sinha, Jochem J. Laan and Evgeny A. Pidko
Phys. Chem. Chem. Phys., 2021, 23, 2557-2567. DOI: 10.1039/D0CP05281G

Paper
Theoretical study on conformational energies of transition metal complexes
Markus Bursch, Andreas Hansen, Philipp Pracht, Julia T. Kohn and Stefan Grimme
Phys. Chem. Chem. Phys., 2021, 23, 287-299. DOI: 10.1039/D0CP04696E

Paper
The effect of N-heterocyclic carbene units on the absorption spectra of Fe(II) complexes: a challenge for theory
Olga S. Bokareva, Omar Baig, Mohammed J. Al-Marri, Oliver Kühn and Leticia González
Phys. Chem. Chem. Phys., 2020, 23, 27605-27616. DOI: 10.1039/D0CP04781C

Paper
QM/MM MD simulations reveal an asynchronous PCET mechanism for nitrite reduction by copper nitrite reductase
Ronny Cheng, Chun Wu, Zexing Cao and Binju Wang
Phys. Chem. Chem. Phys., 2020, 22, 20922-20928. DOI: 10.1039/D0CP03053H

Paper
Optical absorption properties of metal–organic frameworks: solid state versus molecular perspective
Maria Fumanal, Clémence Corminboeuf, Berend Smit and Ivano Tavernelli
Phys. Chem. Chem. Phys., 2020, 22, 19512-19521. DOI: 10.1039/D0CP03899G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

PCCP 2020 Emerging Investigators themed collection now online!

We are delighted to announce that the inaugural Physical Chemistry Chemical Physics Emerging Investigators 2020 collection is now online and free to access until the end of February 2021!

The collection brings together excellent research carried out around the world by early career scientists in physical chemistry, chemical physics and biophysical chemistry. As outstanding researchers in the early stages of their independent careers, each contributor was nominated for the PCCP Emerging Investigator Lectureship and invited to contribute to this themed collection by the Editorial Board.

We congratulate those whose work is featured and hope you enjoy reading their contributions.

Read the full collection online for FREE

It includes:

Profile
Physical Chemistry Chemical Physics profiles: contributors to the Emerging Investigators 2020 issue
Phys. Chem. Chem. Phys., 2020, 22, 24835-24841. DOI: 10.1039/D0CP90238A

Perspective
Cold and controlled chemical reaction dynamics
Jutta Toscano, H. J. Lewandowski and Brianna R. Heazlewood
Phys. Chem. Chem. Phys., 2020, 22, 9180-9194. DOI: 10.1039/D0CP00931H

Communication
A rotational study of the AlaAla dipeptide
I. León, E. R. Alonso, S. Mata and  J. L. Alonso
Phys. Chem. Chem. Phys., 2020, 22, 13867-13871. DOI: 10.1039/D0CP01043J

Paper
A molecular perspective on Tully models for nonadiabatic dynamics
Lea M. Ibele and Basile F. E. Curchod
Phys. Chem. Chem. Phys., 2020, 22, 15183-15196. DOI: 10.1039/D0CP01353F

Paper
Full triples contribution in coupled-cluster and equation-of-motion coupled-cluster methods for atoms and molecules in strong magnetic fields
Florian Hampe, Niklas Gross and Stella Stopkowicz
Phys. Chem. Chem. Phys., 2020, 22, 23522-23529. DOI: 10.1039/D0CP04169F

Paper
The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems
Dale R. Lonsdale and Lars Goerigk
Phys. Chem. Chem. Phys., 2020, 22, 15805-15830. DOI: 10.1039/D0CP01275K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Synchrotron Radiation Techniques in Catalytic Science PCCP themed issue now online and free to access

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Synchrotron Radiation Techniques in Catalytic Science is now online and free to access until the end of November 2020.

Techniques employing Synchrotron Radiation (SR) have had a transformative effect on catalytic science. The unique properties of SR have led to entirely new opportunities in diffraction, spectroscopy, small angle scattering and tomographical studies of catalytic materials. Moreover, SR has been crucial in enabling the growth of in situ experimental studies of catalytic processes under realistic operating conditions. The field impacts on all areas of catalytic science, including heterogeneous, homogeneous, biocatalysis and chemical engineering aspects.

Guest Edited by Professor Richard Catlow, Dr Diego Gianolio and Professor Peter Wells, this themed issue presents a survey of the present state-of-the-art in the field with papers from leading scientists in catalytic science worldwide.

Read the full issue online
It includes:

Editorial
Synchrotron radiation techniques in catalytic science
C. Richard A. Catlow, Peter Wells and Diego Gianolio
Phys. Chem. Chem. Phys., 2020, 22, 18745-18746. DOI: 10.1039/D0CP90186E

Perspective
Soft XAS as an in situ technique for the study of heterogeneous catalysts
Simon K. Beaumont
Phys. Chem. Chem. Phys., 2020, 22, 18747-18756. DOI: 10.1039/D0CP00657B

Perspective
Enantiospecificity in achiral zeolites for asymmetric catalysis
Tianxiang Chen, Ching Kit Tommy Wun, Sarah J. Day, Chiu C. Tang and Tsz Woon Benedict Lo
Phys. Chem. Chem. Phys., 2020, 22, 18757-18764. DOI: 10.1039/D0CP00262C

Communication
Site-dependent selectivity in oxidation reactions on single Pt nanoparticles
Shahar Dery, Suhong Kim, Daniel Feferman, Hillel Mehlman, F. Dean Toste and Elad Gross
Phys. Chem. Chem. Phys., 2020, 22, 18765-18769. DOI: 10.1039/D0CP00642D

Communication
In situ XAFS of acid-resilient iridate pyrochlore oxygen evolution electrocatalysts under operating conditions
David L. Burnett, Enrico Petrucco, Andrea E. Russell, Reza J. Kashtiban, Jonathan D. B Sharman and Richard I. Walton
Phys. Chem. Chem. Phys., 2020, 22, 18770-18773. DOI: 10.1039/D0CP01378A

Paper
The electronic structure, surface properties, and in situ N2O decomposition of mechanochemically synthesised LaMnO3
Rachel H. Blackmore, Maria Elena Rivas, George F. Tierney, Khaled M. H. Mohammed, Donato Decarolis, Shusaku Hayama, Federica Venturini, Georg Held, Rosa Arrigo, Monica Amboage, Pip Hellier, Evan Lynch, Mahrez Amri, Marianna Casavola, Tugce Eralp Erden, Paul Collier and Peter P. Wells
Phys. Chem. Chem. Phys., 2020, 22, 18774-18787. DOI: 10.1039/D0CP00793E

Paper
Elucidating the mechanism of the CO2 methanation reaction over Ni–Fe hydrotalcite-derived catalysts via surface-sensitive in situ XPS and NEXAFS
Gianfranco Giorgianni, Chalachew Mebrahtu, Manfred Erwin Schuster, Alexander Ian Large, Georg Held, Pilar Ferrer, Federica Venturini, David Grinter, Regina Palkovits, Siglinda Perathoner, Gabriele Centi, Salvatore Abate and Rosa Arrigo
Phys. Chem. Chem. Phys., 2020, 22, 18788-18797. DOI: 10.1039/D0CP00622J

Paper
CuO/La0.5Sr0.5CoO3: precursor of efficient NO reduction catalyst studied by operando high energy X-ray diffraction under three-way catalytic conditions
Ivo Alxneit, Alberto Garbujo, Giovanni Carollo, Davide Ferri and Antonella Glisenti
Phys. Chem. Chem. Phys., 2020, 22, 18798-18805. DOI: 10.1039/D0CP01064B

Paper
Identifying the catalyst chemical state and adsorbed species during methanol conversion on copper using ambient pressure X-ray spectroscopies
Baran Eren, Christopher G. Sole, Jesús S. Lacasa, David Grinter, Federica Venturini, Georg Held, Cruz S. Esconjauregui and Robert S. Weatherup
Phys. Chem. Chem. Phys., 2020, 22, 18806-18814. DOI: 10.1039/D0CP00347F

Paper
Model building analysis – a novel method for statistical evaluation of Pt L3-edge EXAFS data to unravel the structure of Pt-alloy nanoparticles for the oxygen reduction reaction on highly oriented pyrolytic graphite
Felix E. Feiten, Shuntaro Takahashi, Oki Sekizawa, Yuki Wakisaka, Tomohiro Sakata, Naoto Todoroki, Tomoya Uruga, Toshimasa Wadayama, Yasuhiro Iwasawa and Kiyotaka Asakura
Phys. Chem. Chem. Phys., 2020, 22, 18815-18823. DOI: 10.1039/C9CP06891K

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ANNOUNCEMENT: Deadline extension for the Quantum Computing and Quantum Information Storage themed collection

Due to the significant challenges being caused by the COVID-19 pandemic we would like to inform you that we are extending the submission deadline for the themed collection – the new deadline for submissions is 31 August 2020.

When you are ready to do so you can submit your article through our online system and indicate where requested that your manuscript is for the Physical Chemistry Chemical Physics (PCCP) themed collection on Quantum Computing and Quantum Information Storage, with Guest Editors:

John Doyle
Harvard University, USA
Anna Krylov (Associate Editor, PCCP)
University of Southern California, USA
Kang-Kuen Ni
Harvard University, USA

 

Quantum computing and information storage promise to revolutionize our information technology. Some basic theory of quantum computing has been established over the past two decades and researchers are on the cusp of quantum supremacy for truly useful systems. Yet, for quantum computing to become a reality we need to find a practical physical platform for realizing qubits with enough fidelity and depth to solve important problems. At present it is not clear what platform will succeed at this.

Molecules are a relative newcomer to the field (apart from the initial molecular NMR qubits that energized the field), but the power of such systems is easy to recognize with a myriad of internal quantum states and dipole coupling for quantum processing. The key goals are the ability to prepare, control, manipulate, and interrogate specific quantum states of interacting qubits, control their interactions and thus program an array of qubits. The current status quo in this field is reminiscent of the dawn of the first quantum revolution (which brought us GPS, MRI, and other amazing technologies): fundamental physics tells us that there are grounds for a powerful and transformative technology and informs us of what needs to be done to realize it, but the actual work and, consequently, the success of the entire endeavour is in the hands of scientists, who must find the right platform for qubits and the right physical tools to control them.

This topical collection will highlight physical chemistry/chemical physics aspects of quantum computing and quantum information storage and will welcome contributions from experimental and theoretical communities working on atomic, molecular, and optical aspects of emerging quantum information technology. Contributions focusing on application of quantum computing to physical problems are also welcome.

We welcome contributions of articles for this the collection including Communications, Full Papers and Perspectives. Please see our Author Guidelines for further information.

If you are interested in submitting a manuscript but are facing issues with the deadline or other aspects of the publishing process due to COVID-19, please get in touch to discuss options with the Editorial Office.

Deadline for submissions: 31 August 2020

Articles can be submitted via our website: mc.manuscriptcentral.com/pccp. Please mention on submission that your manuscript is intended for this themed collection.

All articles will be subject to our fair and impartial peer-review process in the normal way. Accepted articles will be published online in a citeable form as soon as they are ready.

Please contact the Editorial Office with any questions you may have.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open for Nominations: 2021 PCCP Emerging Investigator Lectureship and Themed Issue

PCCP Emerging Investigator Lectureship

Lectureship and Themed Issue details

Recognising and supporting the significant contribution of early career researchers in physical chemistry, chemical physics and biophysical chemistry, the lectureship is a platform for early career physical chemists to showcase their research to the wider scientific community.

The lectureship recipient will receive £1000 to cover travel and accommodation costs to attend and present at a leading international meeting in 2021. The recipient will also be invited to contribute a Perspective article to PCCP. In addition, selected nominees will be invited to submit to the PCCP Emerging Investigator Themed Issue. You can read the inaugural 2020 Emerging Investigator Themed Issue here.

Eligibility
To be eligible for the lectureship and themed issue, candidates must:
•    Have completed their PhD 
•    Be actively pursuing an independent research career within physical chemistry, chemical physics or biophysical chemistry.
•    Be at an early stage of their independent career (typically this will be within 10 years of completing their PhD, but appropriate consideration will be given to those who have taken a career break or followed a different study path).

Selection criteria, nomination and judging process
•    Nominations must be made via email to pccp-rsc@rsc.org using the PCCP Emerging Investigator nomination form and a letter of recommendation.
•    Nominators may only nominate one candidate for consideration per year.
•    Individuals cannot nominate themselves for consideration.
•    Selection will be made by the PCCP Editorial Board. The Lectureship winner will be selected in quarter four of 2020 and announced before the end of the year.
•    The Lectureship winner will be selected based on their nomination, with due consideration given to the letter of recommendation, candidate biography, research achievements, previous PCCP publications and overall publication history.
•    Selected shortlisted nominees, as chosen by the PCCP Editorial Board, will be invited to submit to the 2021 PCCP Emerging Investigator Themed Issue following the Lectureship winner selection.

Submit a nomination
To be considered for the 2021 Lectureship and Themed Issue, the following must be sent to the Editorial Office
•    A letter of recommendation
•    A complete nomination form 

Submission deadline: 14 September 2020

 

Download nomination form 

Submit nomination with letter of recommendation

 

Find out more about our previous winner’s: 

Dr Federico Calle-Vallejo, University of Barcelona (2019 winner)
Professor Debashree Ghosh, Indian Association for the Cultivation of Science (2018 winner)
Professor Ryan P. Steele, University of Utah (2017 winner) 
Dr David Glowacki, University of Bristol (2016 winner)
Read a selection of their work in the PCCP Emerging Investigator Lectureship Winners Collection.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Submissions still welcome to the Quantum Computing and Quantum Information Storage themed collection

The submission deadline is fast approaching for the Physical Chemistry Chemical Physics (PCCP) Themed Collection on Quantum Computing and Quantum Information Storage, with Guest Editors:

John Doyle
Harvard University, USA
Anna Krylov (Associate Editor, PCCP)
University of Southern California, USA
Kang-Kuen Ni
Harvard University, USA

Quantum computing and information storage promise to revolutionize our information technology. Some basic theory of quantum computing has been established over the past two decades and researchers are on the cusp of quantum supremacy for truly useful systems. Yet, for quantum computing to become a reality we need to find a practical physical platform for realizing qubits with enough fidelity and depth to solve important problems. At present it is not clear what platform will succeed at this.

Molecules are a relative newcomer to the field (apart from the initial molecular NMR qubits that energized the field), but the power of such systems is easy to recognize with a myriad of internal quantum states and dipole coupling for quantum processing. The key goals are the ability to prepare, control, manipulate, and interrogate specific quantum states of interacting qubits, control their interactions and thus program an array of qubits. The current status quo in this field is reminiscent of the dawn of the first quantum revolution (which brought us GPS, MRI, and other amazing technologies): fundamental physics tells us that there are grounds for a powerful and transformative technology and informs us of what needs to be done to realize it, but the actual work and, consequently, the success of the entire endeavour is in the hands of scientists, who must find the right platform for qubits and the right physical tools to control them.

This topical collection will highlight physical chemistry/chemical physics aspects of quantum computing and quantum information storage and will welcome contributions from experimental and theoretical communities working on atomic, molecular, and optical aspects of emerging quantum information technology. Contributions focusing on application of quantum computing to physical problems are also welcome.

We welcome contributions of articles for this the collection including Communications, Full Papers and Perspectives. Please see our Author Guidelines for further information.

If you are interested in submitting a manuscript but are facing issues with the deadline or other aspects of the publishing process due to COVID-19, please get in touch to discuss options with the Editorial Office.

Deadline for submissions: 30 July 2020

Articles can be submitted via our website: mc.manuscriptcentral.com/pccp. Please mention on submission that your manuscript is intended for this themed collection.

All articles will be subject to our fair and impartial peer-review process in the normal way. Accepted articles will be published online in a citeable form as soon as they are ready.

Please contact the Editorial Office with any questions you may have.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Frontiers in molecular simulation of solvated ions, molecules and interfaces PCCP themed issue now online and free to access

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Frontiers in molecular simulation of solvated ions, molecules and interfaces is now online and articles in the collection are free to access until the end of August 2020.

Predictive molecular simulation of condensed matter at finite temperature has come a long way from the first practical implementations of ab-initio or Car-Parrinello molecular dynamics thirty years ago.

Guest Edited by Professor Jochen Blumberger, Professor Marie-Pierre Gaigeot, Professor Marialore Sulpizi and Professor Rodolphe Vuilleumier, this themed issue provides a representative snapshot of latest and upcoming techniques and their applications at the forefront of this research area with a specific focus on the simulation of solvated ions, molecules and interfaces.

Read the collection online
It includes:

Editorial
Frontiers in molecular simulation of solvated ions, molecules and interfaces
Jochen Blumberger, Marie-Pierre Gaigeot, Marialore Sulpizi and Rodolphe Vuilleumier
Phys. Chem. Chem. Phys., 2020, 22, 10393-10396. DOI: 10.1039/D0CP90091E

Perspective
Tumbling with a limp: local asymmetry in water’s hydrogen bond network and its consequences
Hossam Elgabarty and Thomas D. Kühne
Phys. Chem. Chem. Phys., 2020, 22, 10397-10411. DOI: 10.1039/C9CP06960G

Perspective
DFT modelling of explicit solid–solid interfaces in batteries: methods and challenges
Kevin Leung
Phys. Chem. Chem. Phys., 2020, 22, 10412-10425. DOI: 10.1039/C9CP06485K

Communication
Temperature effects on the ionic conductivity in concentrated alkaline electrolyte solutions
Yunqi Shao, Matti Hellström, Are Yllö, Jonas Mindemark, Kersti Hermansson, Jörg Behler and Chao Zhang
Phys. Chem. Chem. Phys., 2020, 22, 10426-10430. DOI: 10.1039/C9CP06479F

Paper
Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes
Beatrix M. Bold, Monja Sokolov, Sayan Maity, Marius Wanko, Philipp M. Dohmen, Julian J. Kranz, Ulrich Kleinekathöfer, Sebastian Höfener and Marcus Elstner
Phys. Chem. Chem. Phys., 2020, 22, 10500-10518. DOI: 10.1039/C9CP05753F

Paper
Raman spectrum and polarizability of liquid water from deep neural networks
Grace M. Sommers, Marcos F. Calegari Andrade, Linfeng Zhang, Han Wang and Roberto Car
Phys. Chem. Chem. Phys., 2020, 22, 10592-10602. DOI: 10.1039/D0CP01893G

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed issue of PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Announcing Quantum Computing and Quantum Information Storage themed collection

We are excited to announce an upcoming themed collection in Physical Chemistry Chemical Physics (PCCP) on Quantum Computing and Quantum Information Storage with Guest Editors

John Doyle
Harvard University, USA
Anna Krylov (Associate Editor, PCCP)
University of Southern California, USA
Kang-Kuen Ni
Harvard University, USA

Quantum computing and information storage promise to revolutionize our information technology. Some basic theory of quantum computing has been established over the past two decades and researchers are on the cusp of quantum supremacy for truly useful systems. Yet, for quantum computing to become a reality we need to find a practical physical platform for realizing qubits with enough fidelity and depth to solve important problems. At present it is not clear what platform will succeed at this.

Molecules are a relative newcomer to the field (apart from the initial molecular NMR qubits that energized the field), but the power of such systems is easy to recognize with a myriad of internal quantum states and dipole coupling for quantum processing. The key goals are the ability to prepare, control, manipulate, and interrogate specific quantum states of interacting qubits, control their interactions and thus program an array of qubits. The current status quo in this field is reminiscent of the dawn of the first quantum revolution (which brought us GPS, MRI, and other amazing technologies): fundamental physics tells us that there are grounds for a powerful and transformative technology and informs us of what needs to be done to realize it, but the actual work and, consequently, the success of the entire endeavour is in the hands of scientists, who must find the right platform for qubits and the right physical tools to control them.

This topical collection will highlight physical chemistry/chemical physics aspects of quantum computing and quantum information storage and will welcome contributions from experimental and theoretical communities working on atomic, molecular, and optical aspects of emerging quantum information technology. Contributions focusing on application of quantum computing to physical problems are also welcome.

We welcome contributions of articles for this the collection including Communications, Full Papers and Perspectives. Please see our Author Guidelines for further information.

Deadline for submissions: 30 July 2020

Articles can be submitted via our website: mc.manuscriptcentral.com/pccp. Please mention on submission that your manuscript is intended for this themed collection.

All articles will be subject to our fair and impartial peer-review process in the normal way. Accepted articles will be published online in a citeable form as soon as they are ready.

Please contact the Editorial Office with any questions you may have.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)