Author Archive

PCCP Cover Gallery 2021

Issue 14

Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions

Sebastian Malerz, Florian Trinter, Uwe Hergenhahn, Aaron Ghrist, Hebatallah Ali, Christophe Nicolas, Clara-Magdalena Saak, Clemens Richter, Sebastian Hartweg, Laurent Nahon, Chin Lee, Claudia Goy, Daniel M. Neumark, Gerard Meijer, Iain Wilkinson, Bernd Winter and Stephan Thürmer

Phys. Chem. Chem. Phys., 2021, 23, 8246 DOI:10.1039/D1CP00430A

Sign dependence of MCPL spectra on type and position of substituent groups of pyrene and phenanthrene derivatives

Nobuyuki Hara, Maho Kitahara, Takaharu Sugimura, Hayato Toda, Motohiro Shizuma, Akari Ito, Makoto Miyasaka, Michiya Fujiki and Yoshitane Imai

Phys. Chem. Chem. Phys., 2021, 23, 8236 DOI:10.1039/D1CP00259G

Tuning the transdermal transport by application of external continuous electric field: a coarse-grained molecular dynamics study

Neila Machado, Clarissa Callegaro, Marcelo Augusto Christoffolete and Herculano Martinho

Phys. Chem. Chem. Phys., 2021, 23, 8273 DOI:10.1039/D1CP00354B

Phase separation of binary mixtures induced by soft centrifugal fields

Thomas Zemb, Rose Rosenberg, Stjepan Marčelja, Dirk Haffke, Jean-François Dufrêche, Werner Kunz, Dominik Horinek and Helmut Cölfen

Phys. Chem. Chem. Phys., 2021, 23, 8261 DOI:10.1039/D0CP01527J

Issue 13

Festschrift for Peter Toennies – New horizons in the dynamics of molecules: from gases to surfaces

Giorgio Benedek, Joseph R. Manson and Salvador Miret-Artés

Phys. Chem. Chem. Phys., 2021, 23, 7523 DOI:10.1039/D1CP90026A

Molecular spin echoes; multiple magnetic coherences in molecule surface scattering experiments

Helen Chadwick, Yosef Alkoby, Joshua T. Cantin, Dennis Lindebaum, Oded Godsi, Tsofar Maniv and Gil Alexandrowicz

Phys. Chem. Chem. Phys., 2021, 23, 7673 DOI:10.1039/D0CP05399F

Temperature evolution in IR action spectroscopy experiments with sodium doped water clusters

Daniel Becker, Christoph W. Dierking, Jiří Suchan, Florian Zurheide, Jozef Lengyel, Michal Fárník, Petr Slavíček, Udo Buck and Thomas Zeuch

Phys. Chem. Chem. Phys., 2021, 23, 7682 DOI:10.1039/D0CP05390B

Metal clusters synthesized in helium droplets: structure and dynamics from experiment and theory

Wolfgang E. Ernst and Andreas W. Hauser

Phys. Chem. Chem. Phys., 2021, 23, 7553 DOI:10.1039/D0CP04349D

Issue 12

High-resolution UV spectroscopy of 1-indanol

A. O. Hernandez-Castillo, Johannes Bischoff, Ju Hyeon Lee, Jennifer Langenhan, Mallikarjun Karra, Gerard Meijer and Sandra Eibenberger-Arias

Phys. Chem. Chem. Phys., 2021, 23, 7048 DOI:10.1039/D0CP06170K

Theoretical description of molecular permeation via surface diffusion through graphene nanopores

Chengzhen Sun, Kailin Luo, Runfeng Zhou and Bofeng Bai

Phys. Chem. Chem. Phys., 2021, 23, 7057 DOI:10.1039/D0CP05629D

Organic nanoelectronics inside us: charge transport and localization in RNA could orchestrate ribosome operation

Andrey Sosorev and Oleg Kharlanov

Phys. Chem. Chem. Phys., 2021, 23, 7037 DOI:10.1039/D0CP04970K

Predicting the aptamer SYL3C–EpCAM complex’s structure with the Martini-based simulation protocol

Xu Shang, Zhen Guan, Shuai Zhang, Lulin Shi and Haihang You

Phys. Chem. Chem. Phys., 2021, 23, 7066 DOI:10.1039/D0CP05003B

Issue 11

Quantum computing and quantum information storage

Anna I. Krylov, John Doyle and Kang-Kuen Ni

Phys. Chem. Chem. Phys., 2021, 23, 6341 DOI:10.1039/D1CP90024B

Investigating the role of halogen-bonded complexes in microsolvated Y(H2O)n + CH3I SN2 reactions

Xiaoyan Ji, Chongyang Zhao and Jing Xie

Phys. Chem. Chem. Phys., 2021, 23, 6349 DOI:10.1039/D0CP06299E

Bell inequalities for entangled qubits: quantitative tests of quantum character and nonlocality on quantum computers

David Z. Wang, Aidan Q. Gauthier, Ashley E. Siegmund and Katharine L. C. Hunt

Phys. Chem. Chem. Phys., 2021, 23, 6370 DOI:10.1039/D0CP05444E

Photogenerated carrier dynamics of TIPS-pentacene films as studied by photocurrent and electrically detected magnetic resonance

Ken Kato and Yoshio Teki

Phys. Chem. Chem. Phys., 2021, 23, 6361 DOI:10.1039/D0CP05125J

Issue 10

Gas-phase synthesis of corannulene – a molecular building block of fullerenes

Long Zhao, Srinivas Doddipatla, Ralf I. Kaiser, Wenchao Lu, Oleg Kostko, Musahid Ahmed, Lotefa Binta Tuli, Alexander N. Morozov, A. Hasan Howlader, Stanislaw F. Wnuk, Alexander M. Mebel, Valeriy N. Azyazov, Rana K. Mohamed and Felix R. Fischer

Phys. Chem. Chem. Phys., 2021, 23, 5740 DOI:10.1039/D0CP06537D

Two different regimes in alcohol-induced coil–helix transition: effects of 2,2,2-trifluoroethanol on proteins being either independent of or enhanced by solvent structural fluctuations

Hiroyo Ohgi, Hiroshi Imamura, Tomonari Sumi, Keiko Nishikawa, Yoshikata Koga, Peter Westh and Takeshi Morita

Phys. Chem. Chem. Phys., 2021, 23, 5760 DOI:10.1039/D0CP05103A

Interplay of physically different properties leading to challenges in separating lanthanide cations – an ab initio molecular dynamics and experimental study

Kevin Leung, Anastasia G. Ilgen and Louise J. Criscenti

Phys. Chem. Chem. Phys., 2021, 23, 5750 DOI:10.1039/D1CP00031D

Issue 9

An analysis of electrophilic aromatic substitution: a “complex approach”

Nikola Stamenković, Nataša Poklar Ulrih and Janez Cerkovnik

Phys. Chem. Chem. Phys., 2021, 23, 5051 DOI:10.1039/D0CP05245K

Sign inversion of magnetic circularly polarized luminescence in Iridium(III) complexes bearing achiral ligands

Kana Matsudaira, Atsushi Izumoto, Yuki Mimura, Yoshiro Kondo, Satoko Suzuki, Shigeyuki Yagi, Michiya Fujiki and Yoshitane Imai

Phys. Chem. Chem. Phys., 2021, 23, 5074 DOI:10.1039/D0CP05775D

Non-adiabatic quantum interference in the ultracold Li + LiNa → Li2 + Na reaction

Brian K. Kendrick, Hui Li, Ming Li, Svetlana Kotochigova, James F. E. Croft and Naduvalath Balakrishnan

Phys. Chem. Chem. Phys., 2021, 23, 5096 DOI:10.1039/D0CP05499B

Excitation and ionisation cross-sections in condensed-phase biomaterials by electrons down to very low energy: application to liquid water and genetic building blocks

Pablo de Vera, Isabel Abril and Rafael Garcia-Molina

Phys. Chem. Chem. Phys., 2021, 23, 5079 DOI:10.1039/D0CP04951D

Issue 8

Controlling the off-center positions of anions through thermodynamics and kinetics in flexible perovskite-like materials

A. Lobato, M. Recio-Poo, A. Otero-de-la-Roza, M. A. Salvadó and J. M. Recio

Phys. Chem. Chem. Phys., 2021, 23, 4491 DOI:10.1039/D0CP05711H

Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO2(111) surface

Kota Murakami, Yuta Mizutani, Hiroshi Sampei, Atsushi Ishikawa, Yuta Tanaka, Sasuga Hayashi, Sae Doi, Takuma Higo, Hideaki Tsuneki, Hiromi Nakai and Yasushi Sekine

Phys. Chem. Chem. Phys., 2021, 23, 4509 DOI:10.1039/D0CP05752E

Sulfur Kβ X-ray emission spectroscopy: comparison with sulfur K-edge X-ray absorption spectroscopy for speciation of organosulfur compounds

Muhammad Qureshi, Stanisław H. Nowak, Linda I. Vogt, Julien J. H. Cotelesage, Natalia V. Dolgova, Samin Sharifi, Thomas Kroll, Dennis Nordlund, Roberto Alonso-Mori, Tsu-Chien Weng, Ingrid J. Pickering, Graham N. George and Dimosthenis Sokaras

Phys. Chem. Chem. Phys., 2021, 23, 4500 DOI:10.1039/D0CP05323F

 

 

 

Issue 7

Delocalized relativistic effects, from the viewpoint of halogen bonding

Serigne Sarr, Jérôme Graton, Seyfeddine Rahali, Gilles Montavon and Nicolas Galland

Phys. Chem. Chem. Phys., 2021, 23, 4064 DOI:10.1039/D0CP05840H

Ferroelectricity in thin films driven by charges accumulated at interfaces

Cristian M. Teodorescu

Phys. Chem. Chem. Phys., 2021, 23, 4085 DOI:10.1039/D0CP05617K

Cooperative roles of chemical reactions and mechanical friction in chemical mechanical polishing of gallium nitride assisted by OH radicals: tight-binding quantum chemical molecular dynamics simulations

Kentaro Kawaguchi, Yang Wang, Jingxiang Xu, Yusuke Ootani, Yuji Higuchi, Nobuki Ozawa and Momoji Kubo

Phys. Chem. Chem. Phys., 2021, 23, 4075 DOI:10.1039/D0CP05826B

Issue 6

Surface contacts strongly influence the elasticity and thermal conductivity of silica nanoparticle fibers

Yu Cang, Bohai Liu, Sudatta Das, Xiangfan Xu, Jingli Xie, Xu Deng and George Fytas

Phys. Chem. Chem. Phys., 2021, 23, 3707 DOI:10.1039/D0CP05377E

Probing the molecular frame of uracil and thymine with high-harmonic generation spectroscopy

Eleonora Luppi and Emanuele Coccia

Phys. Chem. Chem. Phys., 2021, 23, 3729 DOI:10.1039/D0CP05559J

Entropic stabilization plays a key role in the non-uniform distribution of oxygen ions and vacancy defects in gadolinium-doped ceria

Methary Jaipal, Bharathi Bandi and Abhijit Chatterjee

Phys. Chem. Chem. Phys., 2021, 23, 3716 DOI:10.1039/D0CP03743E

Issue 5

Small energy gap revealed in CrBr3 by scanning tunneling spectroscopy

Dinesh Baral, Zhuangen Fu, Andrei S. Zadorozhnyi, Rabindra Dulal, Aaron Wang, Narendra Shrestha, Uppalaiah Erugu, Jinke Tang, Yuri Dahnovsky, Jifa Tian and TeYu Chien

Phys. Chem. Chem. Phys., 2021, 23, 3225 DOI:10.1039/D0CP05633B

Long-lived electrets and lack of ferroelectricity in methylammonium lead bromide CH3NH3PbBr3 ferroelastic single crystals

Alessandra Geddo Lehmann, Francesco Congiu, Daniela Marongiu, Andrea Mura, Alessio Filippetti, Alessandro Mattoni, Michele Saba, Guido Pegna, Valerio Sarritzu, Francesco Quochi and Giovanni Bongiovanni

Phys. Chem. Chem. Phys., 2021, 23, 3233 DOI:10.1039/D0CP05918H

Charge transport properties of open-shell graphene fragments: a computational study of the phenalenyl tilings

Wei-Chih Chen and Ito Chao

Phys. Chem. Chem. Phys., 2021, 23, 3256 DOI:10.1039/D0CP03140B

The dynamic behavior and intrinsic mechanism of CO2 absorption by amino acid ionic liquids

Jiahuan Tong, Yuanyue Zhao, Feng Huo, Yandong Guo, Xiaodong Liang, Nicolas von Solms and Hongyan He

Phys. Chem. Chem. Phys., 2021, 23, 3246 DOI:10.1039/D0CP05735E

Issue 4

Accurate and rapid prediction of pKa of transition metal complexes: semiempirical quantum chemistry with a data-augmented approach

Vivek Sinha, Jochem J. Laan and Evgeny A. Pidko

Phys. Chem. Chem. Phys., 2021, 23, 2557 DOI:10.1039/D0CP05281G

Recent progress in approximate quantum dynamics methods for the study of proton-coupled electron transfer reactions

Sandra E. Brown and Farnaz A. Shakib

Phys. Chem. Chem. Phys., 2021, 23, 2535 DOI:10.1039/D0CP05166G

A theoretical investigation into the role of catalyst support and regioselectivity of molecular adsorption on a metal oxide surface: NO reduction on Cu/γ-alumina

Wataru Ota, Yasuro Kojima, Saburo Hosokawa, Kentaro Teramura, Tsunehiro Tanaka and Tohru Sato

Phys. Chem. Chem. Phys., 2021, 23, 2575 DOI:10.1039/D0CP04895J

Modulation of the adsorption chemistry of a precursor in atomic layer deposition to enhance the growth per cycle of a TiO2 thin film

Yeonchoo Cho, Sang Hyeon Kim, Byung Seok Kim, Youngjin Kim and Woojin Jeon

Phys. Chem. Chem. Phys., 2021, 23, 2568 DOI:10.1039/D0CP04176A

Issue 3

Accelerating atomistic simulations with piecewise machine-learned ab Initio potentials at a classical force field-like cost

Yaolong Zhang, Ce Hu and Bin Jiang

Phys. Chem. Chem. Phys., 2021, 23, 1815 DOI:10.1039/D0CP05089J

Collaboration between a Pt-dimer and neighboring Co–Pd atoms triggers efficient pathways for oxygen reduction reaction

Haolin Li, Sheng Dai, Dinesh Bhalothia, Jyh-Pin Chou, Alice Hu and Tsan-Yao Chen

Phys. Chem. Chem. Phys., 2021, 23, 1822 DOI:10.1039/D0CP05205A

Perspective on multi-scale simulation of thermal transport in solids and interfaces

Ming Hu and Zhonghua Yang

Phys. Chem. Chem. Phys., 2021, 23, 1785 DOI:10.1039/D0CP03372C

TD-DFT simulations of K-edge resonant inelastic X-ray scattering within the restricted subspace approximation

Vinícius Vaz da Cruz, Sebastian Eckert and Alexander Föhlisch

Phys. Chem. Chem. Phys., 2021, 23, 1835 DOI:10.1039/D0CP04726K

Issue 2

Substitution effect on the nonradiative decay and transcis photoisomerization route: a guideline to develop efficient cinnamate-based sunscreens

Shin-nosuke Kinoshita, Yu Harabuchi, Yoshiya Inokuchi, Satoshi Maeda, Masahiro Ehara, Kaoru Yamazaki and Takayuki Ebata

Phys. Chem. Chem. Phys., 2021, 23, 834 DOI:10.1039/D0CP04402D

Magnetic deflection of neutral sodium-doped ammonia clusters

J. V. Barnes, M. Beck, S. Hartweg, A. Luski, B. L. Yoder, J. Narevicius, E. Narevicius and R. Signorell

Phys. Chem. Chem. Phys., 2021, 23, 846 DOI:10.1039/D0CP04647G

A quantum chemical model for a series of self-assembled nanocages: the origin of stability behind the coordination-driven formation of transition metal complexes up to [M12L24]24+

Yuichiro Yoshida, Satoru Iuchi and Hirofumi Sato

Phys. Chem. Chem. Phys., 2021, 23, 866 DOI:10.1039/D0CP04755D

Effects of paramagnetic fluctuations on the thermochemistry of MnO(100) surfaces in the oxygen evolution reaction

Sangmoon Yoon, Kyoungsuk Jin, Sangmin Lee, Ki Tae Nam, Miyoung Kim and Young-Kyun Kwon

Phys. Chem. Chem. Phys., 2021, 23, 859 DOI:10.1039/D0CP03779F

Issue 1

Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary

Rui Shi, Eduardo D. Martinez, Carlos D. S. Brites and Luís D. Carlos

Phys. Chem. Chem. Phys., 2021, 23, 20 DOI:10.1039/D0CP05069E

Hydroxide promotes ion pairing in the NaNO2–NaOH–H2O system

Trent R. Graham, Mateusz Dembowski, Hsiu-Wen Wang, Sebastian T. Mergelsberg, Emily T. Nienhuis, Jacob G. Reynolds, Calvin H. Delegard, Yihui Wei, Michelle Snyder, Ian I. Leavy, Steven R. Baum, Matthew S. Fountain, Sue B. Clark, Kevin M. Rosso and Carolyn I. Pearce

Phys. Chem. Chem. Phys., 2021, 23, 112 DOI:10.1039/D0CP04799F

Effects of surface and shear forces on nano-confined smectic-A liquid crystals studied by X-ray diffraction

Masashi Mizukami, Noboru Ohta, Kazuhito Tomita, Takuya Yanagimachi, Yuuta Shibuya, Naoto Yagi and Kazue Kurihara

Phys. Chem. Chem. Phys., 2021, 23, 131 DOI:10.1039/D0CP04266H

First-principles calculations of phonon behaviors in graphether: a comparative study with graphene

Xiaoheng Yang, Dan Han, Hongzhao Fan, Man Wang, Mu Du and Xinyu Wang

Phys. Chem. Chem. Phys., 2021, 23, 123 DOI:10.1039/D0CP03191G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Festschrift for Peter Toennies – New horizons in the dynamics of molecules: from gases to surfaces PCCP themed issue now online and free to access

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Festschrift for Peter Toennies – New horizons in the dynamics of molecules: from gases to surfaces is now online and free to access until the beginning of July 2021.

This themed issue is in honour of Professor Jan-Peter Toennies on the occasion of his 90th birthday.

Professor Toennies is a very well-known physical chemist, Emeritus Director of the Max Planck Institute für Strömungsforschung (now the MPI für Dynamik und Selbstorganisation) in Göttingen, and is still actively publishing even today. A few of his fields of research are molecular beams scattering in the gas phase, chemical reactions, atomic and molecular beams scattering from surfaces, surface structure and dynamics, He dimers, small clusters and nanodroplets.

Guest Edited by Professor Giorgio Benedek, Professor Joseph R. Manson and Professor Salvador Miret-Artés, this collection includes work closely related to Professor Toennies’ fields of research.

 

Read the full issue online
It includes:

Editorial
Festschrift for Peter Toennies – New horizons in the dynamics of molecules: from gases to surfaces
Giorgio Benedek, Joseph R. Manson and Salvador Miret-Artés
Phys. Chem. Chem. Phys., 2021, 23, 7523-7524. DOI: 10.1039/D1CP90026A

Profile
Jan Peter Toennies: an ebullient serendipitous adventurer
Bretislav Friedrich and Dudley Herschbach
Phys. Chem. Chem. Phys., 2021, 23, 7525-7540. DOI: 10.1039/D0CP90251A

Perspective
Metal clusters synthesized in helium droplets: structure and dynamics from experiment and theory
Wolfgang E. Ernst and Andreas Hauser
Phys. Chem. Chem. Phys., 2021, 23, 7553-7574. DOI: 10.1039/D0CP04349D

Paper
Normal and off-normal incidence dissociative dynamics of O2(v,J) on ultrathin Cu films grown on Ru(0001)
J. G. Fallaque, M. Ramos, H. S. Busnengo, F. Martín and C. Díaz
Phys. Chem. Chem. Phys., 2021, 23, 7768-7776. DOI: 10.1039/D0CP03979A

Paper
Alkali metal adsorption on metal surfaces: new insights from new tools
Arjun Raghavan, Louie Slocombe, Alexander Spreinat, David J. Ward, William Allison, John Ellis, Andrew P. Jardine, Marco Sacchi and Nadav Avidor
Phys. Chem. Chem. Phys., 2021, 23, 7822-7829. DOI: 10.1039/D0CP05365A

Paper
A nuclear spin and spatial symmetry-adapted full quantum method for light particles inside carbon nanotubes: clusters of 3He, 4He, and para-H2
María Pilar de Lara-Castells and Alexander O. Mitrushchenkov
Phys. Chem. Chem. Phys., 2021, 23, 7908-7918. DOI: 10.1039/D0CP05332E

 

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

PCCP Quantum Computing and Quantum Information Storage themed collection now online!

PCCP Quantum Computing and Quantum Information Storage themed collection now online!

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed collection Quantum Computing and Quantum Information Storage is now online and free to access until the end of June 2021.

Quantum computing and information storage promise to revolutionize our information technology. Some basic theory of quantum computing has been established over the past two decades and researchers are on the cusp of quantum supremacy for truly useful systems. Yet, for quantum computing to become a reality we need to find a practical physical platform for realizing qubits with enough fidelity and depth to solve important problems. At present it is not clear what platform will succeed at this.

Guest Edited by Professor John Doyle, Professor Anna Krylov and Professor Kang-Kuen Ni, this collection highlights physical chemistry and chemical physics aspects of quantum computing and quantum information storage. We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Read the full collection online

It includes:

Editorial
Quantum Computing and Quantum Information Storage
Anna I. Krylov, John Doyle and Kang-Kuen Ni
Phys. Chem. Chem. Phys., 2021, 23, 6341-6343. DOI: 10.1039/D1CP90024B

Paper
In search of molecular ions for optical cycling: a difficult road
Maxim V. Ivanov, Thomas-C. Jagau, Guo-Zhu Zhu, Eric R. Hudson and Anna I. Krylov
Phys. Chem. Chem. Phys., 2020, 22, 17075-17090.  DOI: 10.1039/D0CP02921A

Paper
First-principles studies of strongly correlated states in defect spin qubits in diamond
He Ma, Nan Sheng, Marco Govoni and Giulia Galli
Phys. Chem. Chem. Phys., 2020, 22, 25522-25527. DOI: 10.1039/D0CP04585C

Paper
Coherent manipulation of the internal state of ultracold 87Rb133Cs molecules with multiple microwave fields
Jacob A. Blackmore, Philip D. Gregory, Sarah L. Bromley and Simon L. Cornish
Phys. Chem. Chem. Phys., 2020, 22, 27529-27538. DOI: 10.1039/D0CP04651E

Paper
Magnetic anisotropy in YbIII complex candidates for molecular qubits: a theoretical analysis
Martín Amoza, Silvia Gómez-Coca and Eliseo Ruiz
Phys. Chem. Chem. Phys., 2021, 23, 1976-1983. DOI: 10.1039/D0CP05422D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Gordon F. Kirkbright and Edward Steers Bursary Awards, 2022

The Gordon F. Kirkbright bursary award is a prestigious annual award that assists a promising early career scientist of any nation to attend a recognised scientific meeting or visit a place of learning. The fund for this bursary was established in 1985 as a memorial to Professor Gordon Kirkbright in recognition of his contributions to analytical spectroscopy and to science in general.

Owing to the generosity of one of our former trustees, an eminent atomic spectroscopist, Professor Edward B.M. Steers, we are now able to award an annual Edward Steers bursary, in addition to the long standing Gordon Kirkbright bursary, to similarly assist a promising early scientist engaged in or utilising analytical spectroscopic techniques.

The ABS Trust defines early career as being either a student, or an employee in a non-tenured academic post or in industry, within 7 years of award of PhD excluding career breaks. The same conditions apply to each bursary.

Applications are invited for both the 2022 Gordon Kirkbright Bursary and the 2022 Edward Steers Bursary.  Although both funds are administered by the ABS Trust, the Kirkbright award is not restricted to spectroscopists, but is open to all involved with or utilising analytical science-based techniques.

Application Forms can be downloaded via:

http://www.abstrust.org/kirkbright-and-steers-bursary-awards

or for further information visit:

http://www.abstrust.org/ or contact abstrustuk.kirkbright@gmail.com

 

The closing date for entries is 30 November 2021.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Quantum Theory: The Challenge of Transition Metal Complexes is now online and free to access until May 2021

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed collection Quantum Theory: The Challenge of Transition Metal Complexes is now online and free to access until May 2021.

This collection aims at promoting the power of quantum theory at deciphering electronic structure, bonding, nuclear relaxation, (photo-) chemical reactivity, catalytic and enzymatic activities of transition metal complexes.

By exploring the intimacy of matter, particularly complex in coordination chemistry, quantum theory does not only provide accurate structural understanding but also in-depth knowledge of the processes that control primary functions, either at the molecular scale or in specific environments.

Guest Edited by Professor Chantal Daniel, Professor Leticia González and Professor Frank Neese, this collection contributes to stimulating discussions in the quest to find fundamental answers at the frontier between hard and life sciences involving transition metal complexes.

Read the full issue online
It includes:

Editorial
Quantum Theory: The Challenge of Transition Metal Complexes
Chantal Daniel, Leticia González and Frank Neese
Phys. Chem. Chem. Phys., 2021, 23, 2533-2534. DOI: 10.1039/D0CP90278K

Perspective
Coupled transport of electrons and protons in a bacterial cytochrome c oxidase—DFT calculated properties compared to structures and spectroscopies
Louis Noodleman, Wen-Ge Han Du, Duncan McRee, Ying Chen, Teffanie Goh and Andreas W. Götz
Phys. Chem. Chem. Phys., 2020, 22, 26652-26668. DOI: 10.1039/D0CP04848H

Paper (Front Cover)
Accurate and rapid prediction of pKa of transition metal complexes: semiempirical quantum chemistry with a data-augmented approach
Vivek Sinha, Jochem J. Laan and Evgeny A. Pidko
Phys. Chem. Chem. Phys., 2021, 23, 2557-2567. DOI: 10.1039/D0CP05281G

Paper
Theoretical study on conformational energies of transition metal complexes
Markus Bursch, Andreas Hansen, Philipp Pracht, Julia T. Kohn and Stefan Grimme
Phys. Chem. Chem. Phys., 2021, 23, 287-299. DOI: 10.1039/D0CP04696E

Paper
The effect of N-heterocyclic carbene units on the absorption spectra of Fe(II) complexes: a challenge for theory
Olga S. Bokareva, Omar Baig, Mohammed J. Al-Marri, Oliver Kühn and Leticia González
Phys. Chem. Chem. Phys., 2020, 23, 27605-27616. DOI: 10.1039/D0CP04781C

Paper
QM/MM MD simulations reveal an asynchronous PCET mechanism for nitrite reduction by copper nitrite reductase
Ronny Cheng, Chun Wu, Zexing Cao and Binju Wang
Phys. Chem. Chem. Phys., 2020, 22, 20922-20928. DOI: 10.1039/D0CP03053H

Paper
Optical absorption properties of metal–organic frameworks: solid state versus molecular perspective
Maria Fumanal, Clémence Corminboeuf, Berend Smit and Ivano Tavernelli
Phys. Chem. Chem. Phys., 2020, 22, 19512-19521. DOI: 10.1039/D0CP03899G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

PCCP 2020 Emerging Investigators themed collection now online!

We are delighted to announce that the inaugural Physical Chemistry Chemical Physics Emerging Investigators 2020 collection is now online and free to access until the end of February 2021!

The collection brings together excellent research carried out around the world by early career scientists in physical chemistry, chemical physics and biophysical chemistry. As outstanding researchers in the early stages of their independent careers, each contributor was nominated for the PCCP Emerging Investigator Lectureship and invited to contribute to this themed collection by the Editorial Board.

We congratulate those whose work is featured and hope you enjoy reading their contributions.

Read the full collection online for FREE

It includes:

Profile
Physical Chemistry Chemical Physics profiles: contributors to the Emerging Investigators 2020 issue
Phys. Chem. Chem. Phys., 2020, 22, 24835-24841. DOI: 10.1039/D0CP90238A

Perspective
Cold and controlled chemical reaction dynamics
Jutta Toscano, H. J. Lewandowski and Brianna R. Heazlewood
Phys. Chem. Chem. Phys., 2020, 22, 9180-9194. DOI: 10.1039/D0CP00931H

Communication
A rotational study of the AlaAla dipeptide
I. León, E. R. Alonso, S. Mata and  J. L. Alonso
Phys. Chem. Chem. Phys., 2020, 22, 13867-13871. DOI: 10.1039/D0CP01043J

Paper
A molecular perspective on Tully models for nonadiabatic dynamics
Lea M. Ibele and Basile F. E. Curchod
Phys. Chem. Chem. Phys., 2020, 22, 15183-15196. DOI: 10.1039/D0CP01353F

Paper
Full triples contribution in coupled-cluster and equation-of-motion coupled-cluster methods for atoms and molecules in strong magnetic fields
Florian Hampe, Niklas Gross and Stella Stopkowicz
Phys. Chem. Chem. Phys., 2020, 22, 23522-23529. DOI: 10.1039/D0CP04169F

Paper
The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems
Dale R. Lonsdale and Lars Goerigk
Phys. Chem. Chem. Phys., 2020, 22, 15805-15830. DOI: 10.1039/D0CP01275K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

PCCP Editor’s Choice: Anouk Rijs Selects Outstanding Articles. Read now for free

Deputy Chair Anouk Rijs has selected some outstanding research to share with you from Physical Chemistry Chemical Physics (PCCP). Read them now for free until the end of January 2021!

Professor Anouk Rijs is the chair of Analytics of Biomolecular Interactions of the Division of BioAnalytical Chemistry at the Vrije Universiteit Amsterdam (NL). She is an expert on IR action spectroscopy combined with mass spectrometry for structural characterization of biomolecules such as peptides and carbohydrates. Her work focuses predominantly on the understanding of the complex mechanism of amyloid forming polypeptides related to pathogenic neurodegenerative diseases and functional amyloids by advancing mass spectrometry and spectroscopic methods.

Submit your research to Anouk here

Read Anouk’s choices for free now:

Paper
Mapping the intrinsic absorption properties and photodegradation pathways of the protonated and deprotonated forms of the sunscreen oxybenzone
Natalie G. K. Wong, Jacob A. Berenbeim, Mathew Hawkridge, Edward Matthews and Caroline E. H. Dessent
Phys. Chem. Chem. Phys., 2019, 21, 14311-14321. DOI: 10.1039/C8CP06794E

Paper
Benchmarking a new segmented K-band chirped-pulse microwave spectrometer and its application to the conformationally rich amino alcohol isoleucinol
Mariyam Fatima, Cristóbal Pérez, Benjamin E. Arenas, Melanie Schnell and Amanda L. Steber
Phys. Chem. Chem. Phys., 2020, 22, 17042-17051. DOI: 10.1039/D0CP01141J

Perspective
Cold and controlled chemical reaction dynamics
Jutta Toscano, H. J. Lewandowski and Brianna R. Heazlewood
Phys. Chem. Chem. Phys., 2020, 22, 9180-9194. DOI: 10.1039/D0CP00931H

Paper
Spectroscopic diagnostic for the ring-size of carbohydrates in the gas phase: furanose and pyranose forms of GalNAc
Baptiste Schindler, Laurent Legentil, Abdul-Rhaman Allouche, Vincent Ferrières and Isabelle Compagnon
Phys. Chem. Chem. Phys., 2019, 21, 12460-12467. DOI: 10.1039/C8CP04082F

Paper
Differentiation of peptide isomers by excited-state photodissociation and ion–molecule interactions
Brielle L. Van Orman, Hoi-Ting Wu and Ryan R. Julian
Phys. Chem. Chem. Phys., 2020, 22, 23678-23685. DOI: 10.1039/D0CP04111D

Paper
Local dynamics of the photo-switchable protein PYP in ground and signalling state probed by 2D-IR spectroscopy of –SCN labels
Julian M. Schmidt-Engler, Larissa Blankenburg, Rene Zangl, Jan Hoffmann, Nina Morgner and Jens Bredenbeck
Phys. Chem. Chem. Phys., 2020, 22, 22963-22972. DOI: 10.1039/D0CP04307A

Perspective
How nature covers its bases
Samuel Boldissar and Mattanjah S. de Vries
Phys. Chem. Chem. Phys., 2018, 20, 9701-9716. DOI: 10.1039/C8CP01236A

We hope you enjoy reading the articles.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Synchrotron Radiation Techniques in Catalytic Science PCCP themed issue now online and free to access

We are delighted to announce that the Physical Chemistry Chemical Physics (PCCP) themed issue Synchrotron Radiation Techniques in Catalytic Science is now online and free to access until the end of November 2020.

Techniques employing Synchrotron Radiation (SR) have had a transformative effect on catalytic science. The unique properties of SR have led to entirely new opportunities in diffraction, spectroscopy, small angle scattering and tomographical studies of catalytic materials. Moreover, SR has been crucial in enabling the growth of in situ experimental studies of catalytic processes under realistic operating conditions. The field impacts on all areas of catalytic science, including heterogeneous, homogeneous, biocatalysis and chemical engineering aspects.

Guest Edited by Professor Richard Catlow, Dr Diego Gianolio and Professor Peter Wells, this themed issue presents a survey of the present state-of-the-art in the field with papers from leading scientists in catalytic science worldwide.

Read the full issue online
It includes:

Editorial
Synchrotron radiation techniques in catalytic science
C. Richard A. Catlow, Peter Wells and Diego Gianolio
Phys. Chem. Chem. Phys., 2020, 22, 18745-18746. DOI: 10.1039/D0CP90186E

Perspective
Soft XAS as an in situ technique for the study of heterogeneous catalysts
Simon K. Beaumont
Phys. Chem. Chem. Phys., 2020, 22, 18747-18756. DOI: 10.1039/D0CP00657B

Perspective
Enantiospecificity in achiral zeolites for asymmetric catalysis
Tianxiang Chen, Ching Kit Tommy Wun, Sarah J. Day, Chiu C. Tang and Tsz Woon Benedict Lo
Phys. Chem. Chem. Phys., 2020, 22, 18757-18764. DOI: 10.1039/D0CP00262C

Communication
Site-dependent selectivity in oxidation reactions on single Pt nanoparticles
Shahar Dery, Suhong Kim, Daniel Feferman, Hillel Mehlman, F. Dean Toste and Elad Gross
Phys. Chem. Chem. Phys., 2020, 22, 18765-18769. DOI: 10.1039/D0CP00642D

Communication
In situ XAFS of acid-resilient iridate pyrochlore oxygen evolution electrocatalysts under operating conditions
David L. Burnett, Enrico Petrucco, Andrea E. Russell, Reza J. Kashtiban, Jonathan D. B Sharman and Richard I. Walton
Phys. Chem. Chem. Phys., 2020, 22, 18770-18773. DOI: 10.1039/D0CP01378A

Paper
The electronic structure, surface properties, and in situ N2O decomposition of mechanochemically synthesised LaMnO3
Rachel H. Blackmore, Maria Elena Rivas, George F. Tierney, Khaled M. H. Mohammed, Donato Decarolis, Shusaku Hayama, Federica Venturini, Georg Held, Rosa Arrigo, Monica Amboage, Pip Hellier, Evan Lynch, Mahrez Amri, Marianna Casavola, Tugce Eralp Erden, Paul Collier and Peter P. Wells
Phys. Chem. Chem. Phys., 2020, 22, 18774-18787. DOI: 10.1039/D0CP00793E

Paper
Elucidating the mechanism of the CO2 methanation reaction over Ni–Fe hydrotalcite-derived catalysts via surface-sensitive in situ XPS and NEXAFS
Gianfranco Giorgianni, Chalachew Mebrahtu, Manfred Erwin Schuster, Alexander Ian Large, Georg Held, Pilar Ferrer, Federica Venturini, David Grinter, Regina Palkovits, Siglinda Perathoner, Gabriele Centi, Salvatore Abate and Rosa Arrigo
Phys. Chem. Chem. Phys., 2020, 22, 18788-18797. DOI: 10.1039/D0CP00622J

Paper
CuO/La0.5Sr0.5CoO3: precursor of efficient NO reduction catalyst studied by operando high energy X-ray diffraction under three-way catalytic conditions
Ivo Alxneit, Alberto Garbujo, Giovanni Carollo, Davide Ferri and Antonella Glisenti
Phys. Chem. Chem. Phys., 2020, 22, 18798-18805. DOI: 10.1039/D0CP01064B

Paper
Identifying the catalyst chemical state and adsorbed species during methanol conversion on copper using ambient pressure X-ray spectroscopies
Baran Eren, Christopher G. Sole, Jesús S. Lacasa, David Grinter, Federica Venturini, Georg Held, Cruz S. Esconjauregui and Robert S. Weatherup
Phys. Chem. Chem. Phys., 2020, 22, 18806-18814. DOI: 10.1039/D0CP00347F

Paper
Model building analysis – a novel method for statistical evaluation of Pt L3-edge EXAFS data to unravel the structure of Pt-alloy nanoparticles for the oxygen reduction reaction on highly oriented pyrolytic graphite
Felix E. Feiten, Shuntaro Takahashi, Oki Sekizawa, Yuki Wakisaka, Tomohiro Sakata, Naoto Todoroki, Tomoya Uruga, Toshimasa Wadayama, Yasuhiro Iwasawa and Kiyotaka Asakura
Phys. Chem. Chem. Phys., 2020, 22, 18815-18823. DOI: 10.1039/C9CP06891K

We hope you enjoy reading the articles. Please get in touch if you have any questions about this themed collection or PCCP.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

PCCP Editor’s Choice: John Zhang Selects Outstanding Articles. Read now for free

Associate Editor John Zhang has selected some outstanding research to share with you from Physical Chemistry Chemical Physics (PCCP). Read them now for free until the end of October 2020!

John Zhang is professor of chemistry at New York University Shanghai and Director of NYU-ECNU Center for Computational Chemistry at NYU Shanghai. His current research focuses on protein structure and dynamics, fragment quantum chemistry study of biomolecules, polarizable force field, protein-ligand interaction, protein-protein interaction, ab initio molecular dynamics study of biomolecules and computational drug design.

Submit your research to John here

Read John’s choices for free now:

Perspective
Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?
Mattia Bondanza, Michele Nottoli, Lorenzo Cupellini, Filippo Lipparini and Benedetta Mennucci
Phys. Chem. Chem. Phys., 2020, Advance Article. DOI: 10.1039/D0CP02119A

Paper
On the polarization of ligands by proteins
Soohaeng Yoo Willow, Bing Xie, Jason Lawrence, Robert S. Eisenberg and David D. L. Minh
Phys. Chem. Chem. Phys., 2020, 22, 12044-12057. DOI: 10.1039/D0CP00376J

Paper
Are 2D fingerprints still valuable for drug discovery?
Kaifu Gao, Duc Duy Nguyen, Vishnu Sresht, Alan M. Mathiowetz, Meihua Tu and Guo-Wei Wei
Phys. Chem. Chem. Phys., 2020, 22, 8373-8390. DOI: 10.1039/D0CP00305K

Paper
Impact of electronic polarizability on protein-functional group interactions
Himanshu Goel, Wenbo Yu, Vincent D. Ustach, Asaminew H. Aytenfisu, Delin Sun and Alexander D. MacKerell
Phys. Chem. Chem. Phys., 2020, 22, 6848-6860. DOI: 10.1039/D0CP00088D

Paper
How do mutations affect the structural characteristics and substrate binding of CYP21A2? An investigation by molecular dynamics simulations
Baihui Lin, Hongxing Zhang and Qingchuan Zheng
Phys. Chem. Chem. Phys., 2020, 22, 8870-8877. DOI: 10.1039/D0CP00763C

 

We hope you enjoy reading the articles.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

PCCP Editor’s Choice: Ron Naaman Selects Outstanding Articles. Read now for free

Associate Editor Ron Naaman has selected some outstanding research to share with you from Physical Chemistry Chemical Physics (PCCP). Read them now for free until the end of September 2020!

Born in Israel, Professor Ron Naaman earned his BSc in 1973 from Ben-Gurion University of the Negev, and his PhD in 1978 from the Weizmann Institute of Science. He worked as a postdoctoral researcher at Stanford University in California, and spent a year in the Department of Chemistry at Harvard University. In 1981, Professor Naaman joined the Weizmann Institute. From 1989-1995, Ron chaired the Institute’s Chemical Services Unit and from 1995-2000, he headed the Department of Chemical Physics. From 2008-2010, Prof. Naaman was the Chair of the Scientific Council at the Institute. Professor Naaman is the incumbent of the Aryeh and Mintzi Katzman Professorial Chair. His research focusses on studying interaction of electrons and their spin with organic and bio-related molecules.

 Submit your research to Ron here

Read Ron’s choices for free now:

Paper
Synergies and compromises between charge and energy transfers in three-component organic solar cells
Camillo Sartorio, Giuliana Giuliano, Michelangelo Scopelliti, Valeria Vetri, Maurizio Leone and Bruno Pignataro
Phys. Chem. Chem. Phys., 2020, 22, 8344-8352. DOI: 10.1039/D0CP00336K

Paper
Electric control of magnetization in an amorphous Co–Fe–Ta–B–O film by resistive switching
Siqi Yin, Chengyue Xiong, Cheng Chen and Xiaozhong Zhang
Phys. Chem. Chem. Phys., 2020, 22, 8672-8678. DOI: 10.1039/D0CP00824A

Paper
Electric-field control of single-molecule tautomerization
Shai Mangel, Maxim Skripnik, Katharina Polyudov, Christian Dette, Tobias Wollandt, Paul Punke, Dongzhe Li, Roberto Urcuyo, Fabian Pauly, Soon Jung Jung and Klaus Kern
Phys. Chem. Chem. Phys., 2020, 22, 6370-6375. DOI: 10.1039/C9CP06868F

Paper
Electric-field-mediated magnetic properties of all-oxide CoFe2O4/La0.67Sr0.33MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure
Ping Wang, Chao Jin, Dong Li, Yuchen Wang, Shasha Liu, Xinyue Wang, Xin Pang, Dongxing Zheng, Wanchao Zheng, Rongkun Zheng and Haili Bai
Phys. Chem. Chem. Phys., 2020, 22, 12651-12657. DOI: 10.1039/D0CP01374A

 

We hope you enjoy reading the articles.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)