HOT Articles – Online and free to access now

CrystEngCommWe have updated our reviewer recommended ‘HOT articles’ for 2023.

We update our HOT articles collection quarterly and have made the selected articles free to access until 22 May 2023! This collection represents the top 10% of research published in CrystEngComm between January – March 2023.

Make the most of the free to access period by browsing the collection today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Welcoming Professors Bin Zhao and Changquan Calvin Sun to the CrystEngComm Editorial Board

We are delighted to introduce Professor Changquan Calvin Sun (University of Minnesota, USA) and Professor Bin Zhao (Nankai University, China) as the latest members of the CrystEngComm Editorial Board!

Changquan Calvin Sun is Professor of Pharmaceutics at the University of Minnesota, USA, from which he received his PhD in Pharmaceutics in 2000. After spending 8 years in the pharmaceutical industry, he joined the Department of Pharmaceutics as an Assistant Professor and was promoted to Full Professor in 2017. Professor Sun’s research focuses on efficient formulation design of high-quality tablet products through the appropriate application of materials science and engineering principles. Two main areas of his current research are crystal and particle engineering for superior pharmaceutical properties and, fundamental understanding of pharmaceutical processes, including powder compaction. He is a Fellow of the American Association for the Advancement of Science (AAAS), a Fellow of the American Association of Pharmaceutical Scientists (AAPS), and a Fellow of the Royal Society of Chemistry. Professor Sun received the 2019 Ralph Shangraw Memorial Award from the International Pharmaceutical Excipient Council (IPEC) and the 2022 David J. W. Grant Distinguished Scholar Award in Basic Pharmaceutics from the National Institute of Pharmaceutical Technology and Education (NIPTE).

Professor Sun has given his insight and thoughts on the future of the field of crystal engineering with regard to pharmaceutical research and the role of CrystEngComm:

“Crystal engineering has been proven to be effective for modifying solid-state properties of molecules. This is attractive for overcoming problems in several fields, including pharmaceutical development. A major opportunity for advancing crystal engineering research is the development of reliable computational tools that can guide efficient design and preparation of new crystals with desired properties. To achieve this goal, quantitative crystal structure – properties relationship needs to be further developed. In this context, CrystEngComm plays a central role in terms of developing and defining a highly collaborative and prolific crystal engineering community through offering a platform for disseminating cutting edge research that meets a high, quality standard.”

Bin Zhao is a Distinguished Professor at Nankai University. He received his PhD degree from Nankai University in 2004 and has worked as a Full Professor at the Department of Chemistry since 2009. His current research interests focus on the construction of complicated metal clusters and structure, luminescence and catalysis of cluster-based coordination polymers, as well as their applications in the fields of energy, environment and health, such as the conversion and utilization of CO2, water splitting, luminescent probes etc. The related research won the support of the National Outstanding Youth Science Fund. Bin Zhao has published over 180 research papers and has won various awards including the National Hundred Outstanding Doctoral Dissertation Award (2006), the Chinese Chemical Society Prize for Young Scientists (2006), the Program for New Century Excellent Talents in University (2007) and the Youth Science and Technology Innovation Leader (2017).

Professor Zhao has also given his insight and thoughts on the role of CrystEngComm and the importance of crystal engineering in materials science research:

“In the field of chemistry and materials science, crystal engineering is an indispensable subject that helps us explore the structures of substances, the design of novel crystalline materials, and the relation amongst structure and properties. Nowadays, crystalline materials such as MOFs are under widespread investigation for their outstanding performance in the areas of catalysis, gas adsorption, chemical sensing and so on. As a result crystal engineering will be under prosperous development. CrystEngComm is a well-known specialized journal about designing and understanding of solid-state and crystalline materials. Huge amounts of impressive crystalline structures with interesting property and design strategies have been published in this journal, which plays a critical role in the crystal engineering community and will get increasing attention in the future.”

Browse a selection of recent articles by Professor Zhao and Professor Sun

The different magnetic relaxation behaviors in [Fe(CN)6]3− or [Co(CN)6]3− bridged 3d–4f heterometallic compounds

Ruirui Wang, Haili Wang, Juan Wang, Feifei Bai, Yue Ma, Licun Li, Qinglun Wang, Bin Zhao and Peng Cheng

CrystEngComm, 2020, 22, 2998-3004

Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges

Si Nga Wong, Yu Chee Sonia Chen, Bianfei Xuan, Changquan Calvin Sun and Shing Fung Chow

CrystEngComm, 2021, 23, 7005-7038

Enhancing the energy barrier of dysprosium(III) single-molecule magnets by tuning the magnetic interactions through different N-oxide bridging ligands

Juan Wang, Mingfang Yang, Juan Sun, Hui Li, Jinjin Liu, Qinglun Wang, Licun Li, Yue Ma, Bin Zhao and Peng Cheng

CrystEngComm, 2019, 21, 6219-6225

Profoundly improved photostability of dimetronidazole by cocrystallization

Xinghui Hao, Jinhui Li, Chenguang Wang, Xinghua Zhao, Xin He and Changquan Calvin Sun

CrystEngComm, 2022, 24, 6165-6171

Please submit your primary research to CrystEngComm – see our author guidelines for information on our article types or find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Collection: Engineering zeolitic imidazolate framework-8-based materials

We are delighted to share with you our latest Editor’s Collection on Engineering zeolitic imidazolate framework-8-based materials

This latest collection of recently published articles focusing on Engineering zeolitic imidazolate framework-8-based materials has been handpicked by CrystEngComm Advisory Board Member, Professor Paolo Falcaro, TU Graz, Austria.

Zeolitic Imidazolate Framework-8 (ZIF-8) is an archetypical Metal-Organic Framework that is often used to develop crystal engineering methods and explore new properties in porous materials. By developing new preparation protocols to control the ZIF structure (from amorphous to crystalline with specific phases), by imparting exogenous hierarchical porosity using templating agents, and by defining synthetic methods for the preparation of core-shell particles, ZIF-8 research will be able to further expand knowledge in porous materials and progress their practical applications. In a different research direction, the potential of ZIF-8 is currently under investigation by developing host–guest systems and composites; these include the integration of ZIFs with biomolecules, polymers, ceramics, and other porous materials. This selection of articles would point to the most recent development in engineering ZIF-8-based materials.

 

Read the full collection here

 

Browse some of the articles in the collection below:

Recovery of syringic acid from aqueous solution by magnetic Fe–Zn/ZIF and its slow release from the CA-coated carrier based on the 3Rs concept

Huifang Zhao, Ting Wang, Dahuan Liu and Qingyuan Yang

CrystEngComm, 2022, 24, 8427-8433

   
App-based quantification of crystal phases and amorphous content in ZIF biocomposites

Michael R. Hafner, Laura Villanova and Francesco Carraro

CrystEngComm, 2022, 24, 7266-7271

   
MOF/COF hybrids as next generation materials for energy and biomedical applications

Cigdem Altintas, Ilknur Erucar and Seda Keskin

CrystEngComm, 2022, 24, 7360-7371

   

Meet the Editor

Paolo Falcaro is Professor of Bio-based Materials Technology at Graz University of Technology, Graz, Austria. He received his PhD in Materials Engineering at the University of Bologna, Italy. Since then he has been working in the field of self-assembled materials, film deposition, and crystal engineering. During the first part of his career he used the sol-gel method to develop nanostructured materials for industry (Civen/Nanofab Italy). In 2009, he moved to an Australian national research organization (CSIRO) where he led a research team engineering porous materials and related inorganic- and bio-composites. In 2016 he joined Graz University of Technology (Institute of Physical and Theoretical Chemistry). Paolo is a recipient of several awards and grants including the “POPCRYSTAL” European Research Council consolidator grant. His research focuses on metal–organic frameworks (MOFs) for the fabrication of films, the development of positioning protocols (e.g. MOF patterns) and the synthesis of bio-composites.

 

 

We hope you enjoy these articles and the rest in the collection.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT Articles – Online and free to access now

CrystEngCommWe have updated our reviewer recommended ‘HOT articles’ for 2022.

We update our HOT articles collection quarterly and have made the selected articles free to access until 20 February 2023! This collection represents the top 10% of research published in CrystEngComm between October – December 2022.

Make the most of the free to access period by browsing the collection today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Talent 2022 themed issue now online

We are delighted to share with you our latest themed issue New Talent 2022.

This issue celebrates the significant contributions from early career researchers to the field of crystal engineering.

This collection is guest edited by:

Professor Christian Doonan, University of Adelaide, Australia
Professor Kwangyeol Lee, Korea University, Korea

 

Read the full collection here

 

Browse a selection of the articles featured in the issue below:

 

Fast and reversible bidirectional photomechanical response displayed by a flexible polycrystalline aggregate of a hydrazone

Poonam Gupta, Suryanarayana Allu, Pragyan J. Hazarika, Nisha R. Ray, Ashwini K. Nangia and Naba K. Nath

CrystEngComm, 2022, 24, 7261-7265

Magnetic order in a metal thiocyanate perovskite-analogue

Matthew J. Cliffe, Oscar Fabelo and Laura Cañadillas-Delgado

CrystEngComm, 2022, 24, 7250-7254

App-based quantification of crystal phases and amorphous content in ZIF biocomposites

Michael R. Hafner, Laura Villanova and Francesco Carraro

CrystEngComm, 2022, 24, 7266-7271

Three-dimensional Cd(II) porphyrin metal–organic frameworks for the colorimetric sensing of Electron donors

Hui Min Tay, Emily J. Goddard and Carol Hua

CrystEngComm, 2022,24, 7277-7282

Hydrogen and halogen bond synergy in the self-assembly of 3,5-dihalo-tyrosines: structural and theoretical insights

Lorenzo Sori, Andrea Pizzi, Nicola Demitri, Giancarlo Terraneo, Antonio Frontera and Pierangelo Metrangolo

CrystEngComm, 2022,24, 7255-7260

We hope you enjoy these articles and the rest in the collection

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT Articles – Online and free to access now

CrystEngCommWe have updated our reviewer recommended ‘HOT articles’ for 2022.

We update our HOT articles collection quarterly and have made the selected articles free to access until 18 November 2022! This collection represents the top 10% of research published in CrystEngComm between July – September 2022.

Make the most of the free to access period by browsing the collection today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Computer Aided Solid Form Design

CrystEngComm

Following the Editor’s collection on Computer Aided Solid Form Design published in 2020, we are delighted to share with you a further, recently commissioned collection of articles also focusing on Computer Aided Solid Form Design, again guest edited by Editorial Board Member Susan Reutzel-Edens, The Cambridge Crystallographic Data Centre, UK.

These articles are free to access until February 28th 2022 and we hope you enjoy reading them.

Selected articles:

Crystal structure prediction of energetic materials and a twisted arene with Genarris and GAtor
Imanuel Bier, Dana O’Connor, Yun-Ting Hsieh, Wen Wen, Anna M. Hiszpanski, T. Yong-Jin Han and Noa Marom
CrystEngComm, 2021, 23, 6023-6038. DOI: 10.1039/ D1CE00745A

First global analysis of the GSK database of small molecule crystal structures
Leen N. Kalash, Jason C. Cole, Royston C. B. Copley, Colin M. Edge, Alexandru A. Moldovan, Ghazala Sadiq and Cheryl L. Doherty
CrystEngComm, 2021, 23, 5430-5442. DOI: 10.1039/ D1CE00665G

The trimorphism of 3-hydroxybenzoic acid: an experimental and computational study
Doris E. Braun
CrystEngComm, 2021, 23, 2513-2519. DOI: 10.1039/ D1CE00159K

Read the full collection here

Meet the Editor

Susan Reutzel-Edens. Royal Society of Chemistry, CrystEngComm Editorial Board MemberSusan Reutzel-Edens was a senior research advisor in Small Molecule Design & Development at Eli Lilly and Company and adjunct professor at Purdue University. She earned her PhD at the University of Minnesota (1991) under the direction of the late Professor Margaret C. Etter. After, she joined Eli Lilly where she founded the solid form design programme. In 2021, she joined the CCDC as Head of Science.
For two decades she led a team of cross-functional scientists charged with finding commercially-viable crystalline forms for small-molecule drug products. She has contributed to the development of more than 150 compounds, is a named inventor on 12 US patents, and has published over 50 papers and book chapters on key aspects of solid form development.
Susan’s research interests include crystal polymorphism, materials design and engineering, crystal nucleation and growth, structure-property relationships, crystal structure prediction and digital design of drug products. She was elected Fellow of the Royal Society of Chemistry in 2018 and currently serves on the CrystEngComm Editorial Board. She is a member of the Editorial Advisory Board of Crystal Growth & Design and Journal of Pharmaceutical Sciences.

 

About CrystEngComm

Published by the Royal Society of Chemistry and with a truly international Editorial Board, CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions.

We invite you to submit your research to CrystEngComm and give your work the global visibility it deserves.

Submit your research now

To keep up to date with the latest articles and other journal news, sign up to the e-alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT Articles – Online and free to access now

CrystEngComm

We have updated our reviewer recommended ‘HOT articles’ for 2021.

We update our HOT articles collection quarterly and have made the selected articles free to access until 18 February 2022! This collection represents the top 10% of research published in CrystEngComm between October – December 2021.

Make the most of the free to access period by browsing the collection today!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Editor’s Collection: Rare Earth Materials

CrystEngComm

We are delighted to share with you our latest collection of recently published articles focusing on Rare Earth Materials handpicked by Associate Editor, Dongfeng Xue, Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, CAS, China

Rare earth materials play a key role in many practical applications such as catalysts, lasers, luminescence, magnetism, and sensors, which are of great interest to the community. Crystallisation involves two continuous stages (including nucleation and crystal growth) when preparing rare earth materials, therefore, crystal engineering strategies may stimulate much more innovative ideas when using rare earth elements as powerful functional sources or modifiers in the scale of the whole system. Rare earth elements have f-orbitals and f-electrons that possess specific coordination abilities with a wide range of coordination numbers from 2 to 16, which provide many opportunities to create novel structures and functions.

These articles are all free to access until January 31st, 2022 and we hope you enjoy reading them.

We also invite you to submit your research to CrystEngComm to give your work the global visibility it deserves.

Submit your research now

Selected articles:

Trends in rare earth thiophosphate syntheses: Rb3Ln(PS4)2 (Ln = La, Ce, Pr), Rb3−xNaxLn(PS4)2 (Ln = Ce, Pr; x = 0.50, 0.55), and RbEuPS4 obtained by molten flux crystal growth

Logan S. Breton, Mark D. Smith and Hans-Conrad zur Loye

CrystEngComm
, 2021, 23, 5241-5248

From [B6O13]8− to [GaB5O13]8− to [Ga{B5O9(OH)}{BO(OH)2}]2−: synthesis, structure and nonlinear optical properties of new metal borates

Qi-Ming Qiu and Guo-Yu Yang

CrystEngComm
, 2021, 23, 5200-5207

Bridgman growth and characterization of a HoCa4O(BO3)3 crystal

Xinchao He, Zhigang Sun, Xiaoniu Tu, Sheng Wang, Kainan Xiong, Hongbing Chen, Xiaoyan Zhang, Liming Shen and Yanqing Zheng

CrystEngComm, 2021, 23, 4833-4839

Read the full collection here

Meet the Editor

Dongfeng Xue is a Professor at the Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China. He received his PhD in inorganic chemistry at Changchun Institute of Applied Chemistry, CAS, in 1998. Following postdoctoral studies at the Universität Osnabrück, University of Ottawa and the National Institute for Materials Science in Tsukuba, he was promoted to full professor in 2001 at Dalian University of Technology, China. In 2011, he returned to Changchun Institute of Applied Chemistry to assume his professorship in materials chemistry, as the director of State Key Laboratory of Rare Earth Resource Utilization during 2015-2019. In 2020, he moved to Shandong University as the director of State Key Laboratory of Crystal Materials. In 2021, he created Multiscale Crystal Materials Research Center at Shenzhen Institute of Advanced Technology. His research interests focus on multiscale crystallization of inorganic matter for energy and optical applications. He has published more than 500 papers and book chapters, and holds around 20 patents. He is a Fellow of the Royal Society of Chemistry, a Corresponding Member of the European Academy of Arts, Sciences and Humanities (EAASH, Paris).

About CrystEngComm

Published by the Royal Society of Chemistry and with a truly international Editorial Board, CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions.

To keep up to date with the latest articles and other journal news, sign up to the e-alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Crystal Growth of Nanomaterials

CrystEngComm

We are delighted to share with you our latest themed collection Crystal Growth of Nanomaterials. This themed issue is focused on recent advances in the understanding and control of crystal growth mechanisms and processes of nanomaterials and was guest edited by Professor Dongfeng Xue, Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Professor Georg Garnweitner, Institute for Particle Technology and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, Germany and Professor Kwangyeol Lee, Department of Chemistry, Research Institute for Natural Sciences, Korea University, Republic of Korea.

Selected articles from the issue:

Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
Stefanos Mourdikoudis and Zdeněk Sofer
https://doi.org/10.1039/D0CE01766C
Surface-directed ZnGa2O4 and β-Ga2O3 nanofins coated with a non-polar GaN shell based on the Kirkendall effect
Babak Nikoobakht, Aaron C. Johnston-Peck, David Laleyan, Ping Wang and Zetian Mi
https://doi.org/10.1039/D1CE00744K
Spin crossover crystalline materials engineered via single-crystal-to-single-crystal transformations
Shufang Xue, Yunnan Guo and Yann Garcia
https://doi.org/10.1039/D1CE00234A

Read the full collection here

About CrystEngComm

Published by the Royal Society of Chemistry and with a truly international Editorial Board, CrystEngComm is the forum for the design and understanding of crystalline materials. We welcome studies on the investigation of molecular behaviour within crystals, control of nucleation and crystal growth, engineering of crystal structures, and construction of crystalline materials with tuneable properties and functions.

We invite you to submit your research to CrystEngComm and give your work the global visibility it deserves.

Submit your research now

To keep up to date with the latest articles and other journal news, sign up to the e-alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)