Role of aspartic acid in regulating the growth of common kidney stones

This article is HOT as recommended by the referees. And we’ve made it free to access for 4 weeks.

Yu Huang, S. Roger Qiu and colleagues have used in situ atomic force microscopy to investigate how the growth of calcium oxalate monohydrate is inhibited by 6-residue linear aspartic acid peptides. 

Analysis of the step speed data showed that the aspartic acid enantiomers block active kink sites through step-pinning.

 
Calcium oxalate monohydrate is the main inorganic component in the most common types of kidney stones, so preventing their formation is of great clinical importance.

Read more for FREE at:

Growth inhibition of calcium oxalate monohydrate crystal by linear aspartic acid enantiomers investigated by in situ atomic force microscopy
Kang R. Cho, E. Alan Salter, James J. De Yoreo, Andrzej Wierzbicki, Selim Elhadj, Yu Huang and S. Roger Qiu
CrystEngComm, 2013
DOI: 10.1039/C2CE25936B, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)