Archive for November, 2017

Check out our Editors’ Choices of recent articles!

CrystEngComm is the journal for innovative research covering all aspects of crystal engineering – the design,  synthesis, crystallisation, and evaluation of solid-state materials with desired properties. Our Editorial Board members are leading researchers in these fields, here are some selections by Tong-Bu Lu and Omar Farha of hot new article in CrystEngComm, as well as some of our favourites! All of these articles are free to access for a limited time.

Professor Tong-Bu Lu

Professor Lu works at the Institute for New Energy Materials and Low Carbon Technologies, based at the Tianjin University of Technology, China.

His research interests include the recognition and activation of molecules and ions by the macrocyclic compounds; the constructions of porous metal-organic frameworks, and investigation of their properties for gases storages and separation, ions exchange and chiral separation and pharmaceutical polymorphs and cocrystals. He has been recognised as a distinguished Professor in Guangdong Province, China.

 

Green synthesis of zirconium-MOFs

 

Helge Reinsch, Bart Bueken, Frederik Vermoortele, Ivo Stassen, Alexandra Lieb, Karl-Petter Lillerud and Dirk De Vos 

CrystEngComm, 2015,17, 4070-4074

DOI: 10.1039/C5CE00618j

“Zr-based metal-organic frameworks(MOFs) have drawn particularly attention due to their extremely high thermal and chemical stability, which can be used as a platform for various catalytic reactions. However, the synthesis of Zr-MOFs usually uses ZrCl4 as the starting material, which the reactions should be carried out in organic solvents and prevent the existence of moisture. Recently, Vos and co-workers reported a green synthesis of Zr-MOFs, where the reaction was carried out in water using Zr(SO4)2×4H2O and 2aminoterephthalic acid as starting materials, which could enable the synthesis of Zr-MOFs at large scale.”

 

Experimental and theoretical investigation of a stable zinc-based metal–organic framework for CO2 removal from syngas

 

Ruiqin Zhong, Jia Liu, Xing Huang, Xiaofeng Yu, Changyu Sun, Guangjin Chen and Ruqiang Zou 

CrystEngComm, 2015,17, 8221-8225

DOI: 10.1039/C5CE01320h

“The construction of water resistant MOFs for selectively separating CO2 from syngas is important for a practical application of MOFs in industry. Zou and co-workers have constructed a micro-porous Zn-based MOF, which shows good framework integrity after guest removal and high water-stability even in boiling water. The titled MOF shows high adsorption selectivity for CO2 over CO and H2.”

 

Professor Omar Farha

Professor Farha works at the International Institute for Nanotechnology, based at Northwestern University, USA.

His research interests include Rational design of metal-organic framework and porous-organic polymer materials for catalysis, gas storage, gas separations, sensing and light harvesting and the rational design of new shuttles, dyes and fabrications to solve problems involving solar energy conversion.

Sensing-functional luminescent metal–organic frameworks

Dian Zhao, Yuanjing Cui, Yu Yang and Guodong Qian 

CrystEngComm, 2016,18, 3746-3759

DOI: 10.1039/C6CE00545d

Cui and Qian highlighted the recent significant progress on luminescent MOFs and solid sensors for a diverse selection of analytes from explosive chemicals to metal ions and many more. Among many, employing MOFs as a chemical sensor is one of the most promising applications of MOFs and this paper gives a fair summary of the recent advances in the field. I believe that this review can be a very good start point for readers of CrystEngComm who are new to the field and therefore it should be recognized.”

 

Structure-directing factors when introducing hydrogen bond functionality to metal–organic frameworks

Ross S. Forgan, Ross J. Marshall, Mona Struckmann, Aurore B. Bleine, De-Liang Long, María C. Bernini and David Fairen-Jimenez 

CrystEngComm, 2015,17, 299-306

DOI: 10.1039/C4CE01379d

From themed collection Metal-Organic Frameworks and Hybrid Materials

“This article highlights a clear example of how noncovalent interactions in SBUs direct the final structure of Zn-based MOFs. Specifically, the authors explain how the incorporation of H-bonding groups on MOF linkers serves as a non-traditional directing agent and results in a different MOF topology when compared to the topology with unfunctionalized linkers. The conclusions drawn are well supported with single crystal data and computational modelling.  Intermolecular interactions, covalent and noncovalent, are an important consideration when predicting MOF topology/properties and designing new MOFs.”

 

Editorial Office

The CrystEngComm editorial office is based in Cambridge, UK.

 

How 2-periodic coordination networks are interweaved: entanglement isomerism and polymorphism

Eugeny V. Alexandrov, Vladislav A. Blatov and Davide M. Proserpio 

CrystEngComm, 2017,19, 1993-2006

DOI: 10.1039/C7CE00313g

“This highlight article describes the authors’ analytical approach to classifying entangled 2-periodic coordination polymers. Using an extended ring nets (ERNs) approach and their freely available ToposPro software they were able show that 74 % of the 1319 structures analysed fell into only 21 out of 216 topologically distinct modes of entanglement. This work also classifies a novel type of isomerism in coordination networks – referred to as entanglement isomerism. This work will certainly be a valuable resource to crystallographers and chemists working on coordination polymers.”

 

Synthetic insect antifreeze peptides modify ice crystal growth habit

Charles H. Z. Kong, Ivanhoe K. H. Leung and Vijayalekshmi Sarojini 

CrystEngComm, 2017,19, 2163-2167

DOI: 10.1039/C7CE00232g

“Proteins that inhibit ice crystallisation are present in many polar organisms and could find use in food preservation and medical applications. Kong and co-workers investigated synthetic analogues of an antifreeze protein (AFP) found in beetle larvae in which disulphide bonds maintain a secondary structure that orientates hydrophilic side groups outward for ice binding. The authors replaced the disulphide bonds with lactam bridges, increasing stability, and found that although the synthetic analogues were less than half the size of the natural AFP they still showed antifreeze activity upon addition of citrate, giving insight into the potentially synergistic action of AFPs.”

 

Submit your research on coordination networks and crystal growth to CrystEngComm – see our author guidelines for information on our article types.

 

Find out more about the advantages of publishing in a Royal Society of Chemistry journal.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the CrystEngComm award winners at the 26th Symposium on Organic Crystals!

This month saw the occasion of the 26th Symposium on Organic Crystals, organised by the The Chemical Society of Japan Division of Organic Crystals and held from 3rd – 5th of November at Yamagata University in Yonezawa, Japan.

 

The conference was chaired by Professor Hiroshi Katagiri of Yamagata University, and CrystEngComm was on-hand to award prizes to the best oral and poster presentations by young researchers.

 

The CrystEngComm award for Outstanding Presentation went to Shizuka Anan, of Hokkaido University, for her presentation entitled ‘Stochastic polymerization of monomers fixed in a MOF crystal as its organic ligands’.

 

The CrystEngComm award for Outstanding Poster went to Haruki Sugiyama, of Tokyo Institute of Technology, for his poster entitle ‘A metal complex with shows photochromism, thermochromism, and mechanochromism – structure-property relationships study’.

 

CrystEngComm award winners Shizuka Anan (center left) and Haruki Sugiyama (center right) being presented their awards by division chair, Professor Kazuki Sada of Hokkaido University (left), and RSC representative Hiromitsu Urakami (right). 

 

CrystEngComm offers a hearty congratulations to both prize winners!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

CrystEngComm publishes its 10,000th article!

When CrystEngComm was established in 1999 as one of the first online-only chemistry journals it published 9 articles in its first twelve months, releasing them online as soon as they were accepted. Since then it has grown to publish more than 1000 articles each year, going from a monthly journal (introduced in 2006) to twice a month (2011) to weekly (2015).  Next year we celebrate our 20th issue, but ahead of that we’ve reached another milestone – this week sees the publication of our 10,000th article! 

The article, published in Volume 19, Issue 42, entitled “The impact of hydrogen bonding on 100% photo-switching in solid-state nitro-nitrito linkage isomers” is online now and free to access. We spoke to the authors Dr Lauren E. Hatcher and Professor Paul Raithby from the University of Bath about the work behind the article:

 

“This paper describing the structural dynamics of light-activated, switchable nitro-nitrito linkage isomers forms part of a programme to develop new materials that will act as molecular switches when exposed to specific wavelengths of visible light.  The overall aim of the programme is to develop new materials that respond rapidly and reliably to changes in the local environment and to send out signals to let us know what is happening.  Our transition-metal nitro complexes, which can be reversibly switched to metastable nitrito isomers, are our benchmark materials in the development of new molecular switches. This is because they are ideal for crystallographic and spectroscopic studies, which provide the exquisite detail that is needed to design more efficient materials using crystal engineering methodologies.”

The Graphical Abstract of the article shows the hydrogen bonding present in the ground state structure of [Pd(Et4dien(NO2)]OTf (left) and the metastable endo-ONO state formed by irradiation at 150K (right). 

 

The work has been highlighted on the front cover of the issue. The cover art shows a stylised view of the experimental set-up. Dr Hatcher shed some light on the experimental procedure:

 
“The background to the front cover is based on a photograph of the LED ring array set-up used to illuminate the crystal in-situ on the diffractometer during the X-ray diffraction experiment. The LED ring array is specially designed to place 5 to 6 LEDs in a uniform arc around the crystal, at a distance of approximately 1 cm, which helps to ensure that the crystal is illuminated as evenly as possible. The array is installed on the neck of the low temperature device and can remain in place throughout the X-ray experiment without impeding the data collection. The LEDs can be easily changed, allowing us to use a variety of different excitation wavelengths, and can be operated either as a continuous light source or can be pulsed using a programmable function generator.”

 

When asked why they chose to publish with CrystEngComm, the authors had this to say:

 “We regularly publish our work on structural dynamics and metastable materials in CrystEngComm as it is a high impact journal with a broad readership interested in the relationship between structure and material properties and function.”

 

Congratulations and a huge thanks to Dr Hatcher and Professor Raithby, and all our authors, for helping us reach this milestone!

 

Author Profiles:
Lauren Hatcher completed her PhD in Chemistry at the University of Bath in 2014, on the topic of Molecular Photocrystallography. She has since continued her interest in switchable molecular crystals as a postdoctoral researcher at Bath, studying crystalline switches that respond to different external stimuli including light, temperature, pressure and gas absorption. She received the Leadership Forum Award for Best Chemistry Student at the European SET Awards (2010), and was recently awarded the 2017 CCDC Chemical Crystallography Prize for Younger Scientists by the British Crystallographic Association. Lauren has a growing publication record, which includes an invited contribution to the 2016 CrystEngComm “New Talent” issue (CrystEngComm, 2016, 18(22), 4180-4187).
Paul Raithby is Professor of Inorganic Chemistry at the University of Bath, prior to which he was a faculty member of the Department of Chemistry at the University of Cambridge for 25 years. He has been awarded the RSC Corday Morgan Medal and Prize (1988) and the RSC Prize for Structural Chemistry (2008). He has over 800 publications and is among the 30 most cited British physical scientists. His research interests span aspects of chemical crystallography, dynamic structural science and co-ordination chemistry. Since 2012 he has led an EPSRC sponsored programme, at Bath, to develop new metastable materials with switchable functionality.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the RSC prize winners at the 67th JSCC symposium!

Earlier this year the 67th conference of the Japan Society of Coordination Chemistry (JSCC) was held at Hokkaido University, co-organised by The Chemical Society of Japan (CSJ). Including both fundamental and applied work on synthesis and properties of coordination compounds, encompassing organometallics and bioinorganic chemistry, the event was a huge success with over 1000 attendees. More than 150 talks, in English and in Japanese, were given over three days, including Award Lectures by world-renowned academics Omar M. Yaghi (University of California, Berkeley), Yoshiaki Nishibayashi (University of Toyko), Jian-Ren Shen (Okayama University), and Erwin Reisner (University of Cambridge).

A number of presentation slots were also allocated to students, and the RSC was on-hand to offer poster prizes.  This marks the eighth year running that Dalton Transactions and CrystEngComm have awarded prizes at this event, and this year also saw the presentation of the inaugural Inorganic Chemistry Frontiers awards. Out of a total of 460 poster presentations, the award winners were:

The CrystEngComm award for outstanding poster presentation goes to Masashi Fujimura, in the group of Ryotaro Matsuda, for his poster entitled “溶存酸素吸着を実現する光応答性ナノポーラス金属錯体の設計
The Dalton Transactions award for outstanding poster presentation goes to Shuji Akinaga, in the group of Makoto Fujita at The University of Toyko, for his poster entitled “Inner-functionalization of crystalline meso-porous peptide complexes
An Inorganic Chemistry Frontiers award for outstanding poster presentation went to Shuto Mochizuki, in the group of Takashi Uemura at Kyoto University, for his poster entitled “Fabrication of ultrathin polymer films using metal-organic frameworks with 2-D nanospace
An Inorganic Chemistry Frontiers award for outstanding poster presentation went to Yoshiyuke Takemoto, of Nagoya Institute of Technology, for his poster entitled “Catalytic silylation of N2 by use of T-shaped cobalt complex bearing iminophosphorane ligands

The winners were given an RSC heat-sensitive mug as seen in the photo above of Yoshiyuke Takemoto – who we hope doesn’t drink coffee while using that solvent drying system!

 

The RSC offers its hearty congratulations to all the winners!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)