Archive for January, 2015

Conference Report: 3rd China-India-Singapore Symposium on Crystal Engineering

The 3rd China-India-Singapore (CIS) Symposium on Crystal Engineering was recently held at the Indian Institute of Science, Bangalore, India, 8–10 December, 2014.

The CIS symposium series on “Crystal Engineering” was conceived so that researchers from China, India and Singapore could meet, discuss, present and exchange their research work to accelerate the growth of crystal engineering.

The symposium series aims to discuss and acknowledge recent advances in the field of crystal engineering in the south Asian region. The 1st CIS Symposium on Crystal Engineering was held at National University of Singapore (NUS) from 30 July –
2 August, 2010. The 2nd CIS Symposium on Crystal Engineering was held at Guangzhou, China, 20–23 November, 2012.

The 3rd CIS Symposium on Crystal Engineering was recently organized by Professors Gautam. R. Desiraju and S. Natarajan at the Solid State and Structural Chemistry Unit, at the Indian Institute of Science. A total of 22 researchers from different institutes in China, India and Singapore presented their work, ranging from the research areas of porous materials and pharmaceutical solids to intermolecular interactions and computational chemistry. This symposium highlighted some of the recent developments in the field of organic, inorganic, pharmaceutical and organic-semiconductor materials achieved through the applications of crystal engineering.

3rd China-India-Singapore (CIS) Symposium on Crystal Engineering

The 3rd CIS Symposium on Crystal Engineering started with the welcome address from Prof. S. Natarajan (IISc, India) followed by inaugural speeches by Prof. Gautam R. Desiraju (IISc, India) and Prof. Shilun Qiu (Jilin University, China). This was followed by the first scientific lecture by Prof. X.M. Chen (Sun Yat-Sen University, China) on “Metal Organic Frameworks for Molecular Oxygen Sensing”. Prof. T.N. Guru Row (IISc Bangalore, India), Prof. A. Ramanan (IIT Delhi, India), and Prof. Cheng Peng (Nankai University, China) described the use of the crystal engineering concepts towards understanding the a) relevance of intermolecular interactions, b) structure and properties of metal carbarboxylate-based supramolecular assemblies and c) rational design of molecular magnetic materials. Other speakers of the first day were Prof. S. Aipitamula (A*STAR, Singapore), Prof. P. Dastidar (IACS, India), Prof. C. Malla Reddy (IISER Kolkata, India), Prof. P. Thilagar (IISc Bangalore, India), and Prof. P. Venugopalan (Punjab University, India).

On the second day of the meeting, Prof. J.J. Vittal (National University of Singapore, Singapore) outlined an interesting project on “Crystal Engineering of Photoreactive and Photosalient Crystals”. This was followed by the scientific lectures by Profs. Lu Tong-Bu (Sun Yet-Sen University, China), R. Banerjee (CSIR-NCL, India), V.R. Pedireddi (IIT Bhubaneswar, India), P.S. Mukherjee (IISc Bangalore, India), Su Cheng-Yong (Sun Yet-Sen University, China), J.N. Moorthy (IIT Kanpur, India), T.K. Maji (JNCASR, Bangalore, India), A. Nangia (University of Hyderabad, India), B. K. Saha (Pondicherry University, India) and Daliang Zhang (Jilin University, China).

Prof. Shilun Qiu, (Jilin University, China) delivered a stimulating talk on gas storage in metal-organic frameworks and covalent-organic frameworks during the final day of the meeting. His talk was followed by the scientific lectures by Profs. K. Biradha (IIT Kharagpur, India), and T.S Thakur (Central Drug Research Institute, India).

The next meeting will be held in 2016 as a South and East Asia Conference on Crystal Engineering, SEACCE. This meeting will aim to popularize the idea of crystal engineering in countries such as Bangladesh, Malaysia, Nepal, Pakistan, Sri Lanka, Thailand, and Vietnam. A resolution was signed by the participants from China, India and Singapore. The next meeting is likely to be held in Nepal, Sri Lanka or Bhutan in the summer of 2016.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New web interface for viewing and downloading crystal structures

Over on our eScience pages, Aileen Day has blogged about linking 2D structures in ChemSpider to the corresponding experimental 3D structures in the Cambridge Structural Database (CSD).

As well as these links, you can go also go directly from Royal Society of Chemistry journal articles to corresponding entries in the CSD. These links now resolve to a brand new interface over at the Cambridge Crystallographic Data Centre (CCDC), where anyone can immediately see interactive 3D visualisations of structures along with chemical interpretations.

The best example of this is probably a recent structure of vanillic acid and theophylline (see the image below), a flavoursome combination, as a form of vanillic acid gives, yes, you guessed it, the flavour of vanilla, whereas theophylline is found in cocoa beans. This happens to be the 750,000th entry added to the CSD! It’s a structure reported in a CrystEngComm article by Ayesha Jacobs and Francoise Amombo Noa from the Cape Peninsula University of Technology in South Africa.

CSD entry

This new web interface is great news for our readers, as it provides a much richer user experience for viewing CSD structures after clicking on links within Royal Society of Chemistry journal articles. You can also download the structures, along with all of the available experimental data. You can do this from all of the platforms that you use to read Royal Society of Chemistry articles, including your mobile devices. And it’s up to the minute – as soon as crystal structures are published in a Royal Society of Chemistry journal, the corresponding entries are made available through an automated feed from us to the CCDC. Give it a try!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Communicating Crystallography

The Chemical Crystallography Group of the British Crystallographic Association recently held its 2014 autumn meeting — “Communicating Crystallography” — in conjunction with the Royal Society of Chemistry, on 19th November 2014 at Burlington House, London.

With 2014 being the UNESCO International Year of Crystallography, there was no better time to have a meeting to showcase and discuss crystallography-based outreach and education.

Three sessions of talks encompassed the theme of “Communicating Crystallography” from educational, publishing and data presentation points of view. The session on publishing was delivered by the Royal Society of Chemistry and showed how crystallography (and chemistry) can be disseminated through a range of channels — journals, databases and social media.

Topics covered during the sessions included: outreach to students and the general public; communication of results in journals, databases and social media; and curation of data. The insights gained from the meeting have relevance well beyond the confines of chemical crystallography.

Communicating Crystallography From left to right: Simon J. Coles,
Guy Jones, Serin Dabb and David Sait
present at “Communicating Crystallography”.

The speakers and the audience were excellently engaged, creating a very successful and enjoyable meeting. Thanks go to all involved!

View the talks from the meeting here.


This Blog post is based on material kindly provided by Carl Schwalbe (Aston University), Natalie Johnson (University of Newcastle) and Simon J. Coles (University of Southampton; Chair of the Chemical Crystallography Group).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Improved catalysts for carbon dioxide photoreduction

Carbon dioxide (CO2) can be reduced to give methane using light, in the presence of a catalyst. This process is attractive as it provides a potential feedstock for other processes as well as removing the greenhouse gas CO2 from the atmosphere. The catalyst is key to the photoreduction, and ZnGaNO is a promising candidate as it is stable, environmentally friendly and absorbs light in the visible region, which is suitable for the reduction of CO2.

A new paper reports the synthesis of ZnGaNO nanorods by molten salt ion exchange, which represents a milder method than that used conventionally. This involves use of ZnCl2 as both a source of Zn and a molten salt. It is nitrided at 750 °C for five hours, along with KGaO2, as represented below.

Photocatalysts by molten salt ion exchange

The as-prepared nanorods show enhanced performance as catalysts for CO2 reduction. The rate of methane evolution is four times higher than that using ZnGaNO from solid state synthesis. As the photoreaction takes place on the surface of the catalyst, the larger surface area of the nanorods is thought to be significant. In addition, the nanorods possess a higher concentration of Zn ions owing to a lower synthesis temperature, which facilitates better energy absorption. There are also less surface defects in the nanorods, so recombination of carriers is disfavoured.

For more details, see the full paper at:

Molten salt ion exchange route to ZnGaNO single crystal nanorods for improved CO2 photoreduction to CH4
P. Zhou, S. C. Yan and Z. G. Zou
CrystEngComm, 2015, DOI: 10.1039/C4CE02198C


Gwenda Kyd Gwenda Kyd has a PhD in metallocarborane chemistry from the University of Edinburgh. Other research work includes the spectroscopic study of the structure of glasses and organometallic electron-transfer reactions and the preparation of new inorganic phosphors. She has recently published a book on chemicals from plants.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)