Al-based MOFS for heat distribution

The use of fossil fuel-powered vapour compressors for the allocation of hot and cold air makes a significant contribution to global warming. A greener alternative involves reversible adsorption and desorption of a working fluid (often water) in adsorption heat pumps (AHPs) or adsorption chillers (ADCs), concepts originally devised by Michael Faraday in 1848.

The limiting factor when using MOF-based AHPs and ADCs is the rate of heat transfer. In this light, Al-based MOFs provide an attractive target as Al can not only provide a heat-conducting surface, but is also naturally abundant and of low toxicity.

Heat transfer MOFS

MOFs for heat transfer

In their recent paper in CrystEngComm, de Lange, Gascon and co-workers evaluate a series Al-based MOFs for use in AHPs and ADCs. Of all the materials they tested, the most favourable characteristics were shown by the compound designated CAU-10-H, a material comprised of [Al–OH]2+ chains linked together by isophthalic acid, (CAU is Christian-Albrechts-Universität, where the compounds were first developed). 

In the presence of hydrochloric acid, CAU-10-H can be grown directly on to γ-alumina beads or metallic aluminium. These systems show good water adsorption and stability.  Up to 38kJ of heat can be withdrawn in the evaporator of an AHP/ADC per square metre of Al-coated surface, suggesting further study and development of Al-MOFs is worthwhile.

For more details, read the full paper:

Crystals for sustainability – structuring Al-based MOFs for the allocation of heat and cold
M. F. de Lange, C. P. Ottevanger, M. Wiegman, T. J. H. Vlugt, J. Gascon and F. Kapteijn
CrystEngComm, 2014, DOI: 10.1039/C4CE01073F


Gwenda Kyd

Gwenda Kyd has a PhD in metallocarborane chemistry from the University of Edinburgh. Other research work includes the spectroscopic study of the structure of glasses and organometallic electron-transfer reactions and the preparation of new inorganic phosphors

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)