Ditopic ligands in coordinative, halogen, and hydrogen bonding

Posted on behalf of Josh Campbell, web writer for CrystEngComm

Ditopic ligands (ligands capable of coordination at two separate sites) allow the creation of well-ordered extended complexes containing different cations. They are usually N-, P-, O-, and S-containing (or in their N, O-, N, S,- and N, P-combinations) organic molecules, and have been used in various applications such as monitoring guest exchange and the creation of metal organic frameworks. The multi-centre nature of these ligands allows for other interactions outside of coordinative and hydrogen bonding such as halogen bonding. 3-(4-pyridyl)-2,4-pentanedione (HacacPy) is a well known ditopic ligand, and in this new work, has been used to create a crystal in which these three types of bonding are represented.

Three complexes containing HacacPy and tetrafluorodiiodobenzene (TFDIB) were prepared. Compound 1 showed the halogen bonding produced between the pyridine N and the iodine of TFDIB with this being the only coordination centre used. In compound 2 HacacPy is deprotonated and is involved in coordinative bonding using the acac part of the ligand and two pyridine N atoms form halogen bonds to TFDIB producing chains. Compound 3 introduces a third interaction, hydrogen bonding of a Py N to a solvent molecule which is in turn halogen bonded to a TDIB which is halogen bonded to another Py N. The authors analysed the charge density of 3 and provided the first tentative experimental results of the effect of metal coordination on halogen bonds.

 3-(4-Pyridyl)-2,4-pentanedione – a bridge between coordinative, halogen, and hydrogen bonds

Find out more from the paper:

3-(4-Pyridyl)-2,4-pentanedione – a bridge between coordinative, halogen, and hydrogen bonds
Carina Merkens, Fangfang Pan and Ulli Englert
CrystEngComm, 2013, Advance Article
DOI: 10.1039/C3CE41306C, Paper


Josh CampbellJosh Campbell is a PhD student currently at the University of Southampton studying crystal structure prediction of organic semiconductors. He received his BSc from the University of Bradford.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)