Archive for June, 2016

New Editorial and Advisory Board Members

We are very pleased to welcome two new members to our Organic & Biomolecular Chemistry Editorial Board and two new members to our Advisory Board – Dr Géraldine Masson (Institut de Chimie des Substances Naturelles, France) and Professor Govindasamy Mugesh (Indian Institute of Science, Bangalore, India), and Dr Gonçalo Bernardes (University of Cambridge, UK) and Dr Ratmir Derda (University of Alberta, Canada).

Géraldine Masson received her PhD in 2003 from the Joseph Fourier University, (France), under the supervision of Dr. Sandrine Py and Prof. Yannick Vallée. In the years 2003–2005 she was a Marie Curie postdoctoral research fellow with Prof. Jan van Maarseveen and Prof. Henk Hiemstra at the University of Amsterdam (Holland). In 2005, she joined the Institut de Chimie des Substances Naturelles (CNRS, France) as Chargé de Recherche and was promoted to Director of Research 2nd class in 2014. Her group’s research activities are directed toward the development of new organocatalytic enantioselective reactions and novel synthetic methodologies, and photoredox catalysis and their application in the synthesis of diverse natural and unnatural molecules displaying biologically activities.


Mugesh received his B.Sc. (1990) and M.Sc. (1993) degrees from the University of Madras and Bharathidasan University, respectively. He obtained his Ph.D. (1998) at the Indian Institute of Technology, Bombay. He was an Alexander von Humboldt Fellow at the Technical University, Braunschweig, Germany and a Skaggs postdoctoral fellow at the Scripps Research Institute, La Jolla, USA. Mugesh is an author of more than 120 publications in international peer reviewed journals. He received several awards and recognitions, which include: J. C. Bose National Fellowship, Government of India (2016); Asian Rising Star Commemorative Plaque, Asian Chemical Congress (2013), Fellow, Royal Society of Chemistry (FRSC, 2013), Shanti Swarup Bhatnagar Prize (2012), Fellow, The National Academy of Sciences, India (2012), AstraZeneca Excellence in Chemistry Award (2012); Fellow, Indian Academy of Sciences (2012); Swarnajayanti Fellowship, Government of India (2006-07).

His research interests include:

  • chemistry of thyroid hormone metabolism,
  • development of novel therapeutics for endothelial dysfunction and neurodegenerative diseases, and
  • nanomaterials for biological applications.

Gonçalo Bernardes graduated in Chemistry from the University of Lisbon in 2004 and soon moved to the University of Oxford where he completed his D.Phil. in 2008 under the supervision of Prof. Ben Davis. He was then awarded a Marie-Curie Fellowship to perform postdoctoral studies with Prof. Peter H. Seeberger. After a short period in Portugal working as a Group Leader at Alfama Lda., Gonçalo moved to the ETH Zürich to join the lab of Prof. Dario Neri. Gonçalo started his independent research career in 2013 at the Department of Chemistry, University of Cambridge after being awarded a prestigious Royal Society University Research Fellowship. Simultaneously, he founded a pioneering research unit in Chemical Pharmacology at the Instituto de Medicina Molecular in Lisbon. Despite his early age, he has published >50 papers and 5 patents. He has picked many accolades during his research career such as the European Young Chemist Award – Silver Medal in 2014, and more recentlythe Chem Soc Rev Emerging Investigator Lectureship 2016 and the RSC Harrison–Meldola Memorial Prize. For his efforts in translational research, Gonçalo was distinguished by the Portuguese Ministry of Health (MH) of Portugal for relevant services to Public Health and Medicine.

He now spends his time between his labs in Cambridge and Lisbon, directing a research program at the interface of chemistry and biology with a focus on the development of novel chemoselective reactions for the modification of biomolecules, and their use to understand and influence human disease.

Ratmir Derda received his undergraduate degree in Physics from Moscow Institute of Physics and Technology in 2001 and Ph.D. in Chemistry from the University of Wisconsin-Madison in 2008, under the supervision of Laura L. Kiessling. From 2008 to 2011, he was a postdoctoral researcher at Harvard University working under the supervision of George M. Whitesides and Donald E. Ingber. He joined University of Alberta in 2011 as an Assistant Professor in Chemistry and the Principal Investigator at the Alberta Glycomics Centre.

The Derda Lab centers on the development and mechanistic investigation of chemical transformations of genetically-encoded substrates. We employ genetically-encoded chemical libraries to attack unsolved problems in molecular recognition to aid the discovery of new therapeutics, biomaterials and molecular diagnostics.


Find some of their most recent RSC publications below or find out more about the other members of our Editorial and Advisory Boards here.


Catalytic, highly enantioselective, direct amination of enecarbamates
Audrey Dumoulin, Claudia Lalli, Pascal Retailleau and Géraldine Masson
Chem. Comm. , 2015, 51 , 5383-5386, DOI: 10.1039/C4CC08052A, Communication

One pot and selective intermolecular aryl- and heteroaryl-trifluoromethylation of alkenes by photoredox catalysis
Aude Carboni, Guillaume Dagousset, Emmanuel Magnier and Géraldine Masson
Chem. Comm. , 2014, 50 , 14197-14200, DOI: 10.1039/C4CC08052A, Communication

Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics
Debasish Bhowmick and Govindasamy Mugesh
Org. Biomol. Chem. , 2015, 13, 10262-10272, DOI: 10.1039/C5OB01665G, Review Article

Introduction of a catalytic triad increases the glutathione peroxidase-like activity of diaryl diselenides
Debasish Bhowmick and Govindasamy Mugesh
Org. Biomol. Chem., 2015, 13, 9072-9082, DOI: 10.1039/C5OB01294E, Paper

Iminoboronates are Efficient Intermediates for Selective, Rapid and Reversible N-Terminal Cysteine Functionalisation
Hélio Faustino, Maria José Silva, Luis F. Veiros, Gonçalo J. L. Bernardes and Pedro M. P. Gois
Chem. Sci., 2016, Accepted Manuscript, DOI: 10.1039/C6SC01520D, Edge Article

Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents
Tiago Rodrigues, Florian Sieglitz and Gonçalo J. L. Bernardes
Chem. Soc. Rev., 2016, Advance Article, DOI: 10.1039/C5CS00916B, Tutorial Review

Phage-displayed macrocyclic glycopeptide libraries
Simon Ng and Ratmir Derda
Org. Biomol. Chem., 2016, 14, 5539-5545, DOI: 10.1039/C5OB02646F, Communication

Heat-enhanced peptide synthesis on Teflon-patterned paper
Frédérique Deiss, Yang Yang, Wadim L. Matochko and Ratmir Derda
Org. Biomol. Chem., 2016, 14, 5148-5156, DOI: 10.1039/C6OB00898D, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Fluorescent nucleosides provide flexibility in fine-tuning photophysical properties

The ubiquity of radioisotope-based bioprobes is being challenged by their nonradioactive counterparts. In recent years, they have gained significant popularity in life sciences due to major advances in available detection methods and enhanced analytical performance. Many would argue that radioactive labels offer superior results in experiments that require high sensitivity and resolution but their safe handling, stability and the proper disposal of radioactive materials limit speed and convenience of use.

The newest generation of fluorescent and chemifluorescent probes promise greater flexibility and versatility for a range of applications and the development of fully automated instrumentations and powerful imaging systems provide high throughput solutions to meet the increasing demands of the modern lab.

Unique photophysical properties can be incorporated into small biomolecules to generate fluorescent bioprobes. Fluorescently labeled nucleosides have distinct advantages over other synthetic molecules due to inherent fluorescence and minimal steric disruptions, and they can be tuned e.g. to form unusual base-pair preferences. They form noncovalent, highly specific duplexes with a complementary nucleic acid strand and are used to detect a defined DNA or RNA target sequence.

In a recent publication from the group of Yoshio Saito of Nihon University, the development of a novel nucleoside-based bioprobe containing a 3-deaza-2’-deoxyadenosine skeleton was reported. It behaves as an indicator for adenosine-cytosine base pair formation in oligodeoxynucleotide (ODN) duplexes by monitoring base-pair induced protonation. The probe displays distinct changes in its absorption and fluorescence activity as a result of its protonation state. In this way, the group is able to clearly discriminate cytosine from other bases on complementary strands based on absorption and fluorescence spectra.

The development of new biomarkers is providing insight to various genetic disorders, disease susceptibility, cancer predisposition and medication response. When fluorescent bioprobe imaging is coupled with genetic analytical techniques, such as single nucleoside polymorphism (SNP)-typing, the two synergize and provide a much more complete view than either one alone.

To find out more see:

Design and synthesis of a novel fluorescent benzo[g]imidazo[4,5-c]quinoline nucleoside for monitoring base-pair-induced protonation with cytosine: distinguishing cytosine via changes in the intensity and wavelength of fluorescence
Shogo Siraiwa, Azusa Suzuki, Ryuzi Katoh and Yoshio Saito
DOI:10.1039/C6OB00494F


Victoria Corless is currently completing her Ph.D. in organic chemistry with Prof. Andrei Yudin at The University of Toronto. Her research is centred on the synthesis of kinetically amphoteric molecules, which offer a versatile platform for the development of chemoselective transformations with particular emphasis on creating novel biologically active molecules.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Improving total synthesis of modified histone proteins to elucidate epigenetic mechanisms

In their search to solve complex biological problems by bridging gaps between protein synthesis and biological application, Prof. Jennifer Ottesen and her group at Ohio State University have been successfully developing what they term a ‘chemical toolbox’ for histone protein synthesis.

Within the field of epigenetics, heritable changes in gene expression outside of the DNA sequence are tightly regulated by post-translational modifications (PTMs) of DNA and histone proteins–the proteins that package DNA. Known PTMs of histone proteins include methylation, acetlyation, phosphorylation, sulfonylation and ubiquitination and fall under a hypothesized “histone code” which suggests that combinations of these markers alter DNA accessibility through chromatin restructuring and ultimately regulate gene expression.

In building synthetic histone proteins with distinct combinations of chemical modifications, the role of a specific sequence of PTMs in gene expression and the molecular mechanisms by which they function can be elucidated and targeted. This is of particular interest as epigenetics has become a hot topic in recent years due to an ever-growing understanding of these markers and their potential to act as selective entry points for disease intervention.

Ottesen’s recent publication in Organic and Biomolecular Chemistry outlines a new hybrid phase ligation approach for the synthesis of modified histone proteins which overcomes some long standing issues inherent in histone total synthesis. This method combines both solid and solution-phase ligation chemistry to improve process efficiency and overall yield. The group even demonstrates its ability to produce previously challenging CpA-K12ac histone protein which could not be synthesized with standard approaches.

Key to their success is the application of a dual-linker strategy which led to an efficient, sequence-independent resin attachment that liberates the desired native carboxy terminus of the protein which had been previously difficult to accomplish. Below is a scheme describing the solid-phase native chemical ligation of one of their desired targets, histone H4. A single coupling cycle includes deprotection followed by ligation and cleavage from the resin may be accomplished at either the Rink linker (black), or at the HMBA linker (red) to generate the native terminus.

Studies such as Prof. Ottesen’s are crucial as mechanisms by which certain genes are regulated must first be determined before developing targeted therapeutic approaches. Histone deacetylase (HDAC) inhibitors for example, interfere with histone deacetylase and have shown activity against various cancers, neurological diseases and immune disorders. The utility of this class of compound depends on their ability to target and modulate a subset of genes without causing global biological changes. Presently, additional work is required to define the human epigenome, its role in disease development and the processes that regulate it. Progress in the synthesis of highly desirable modified histone proteins brings us ever closer.

To find out more see:

Hybrid phase ligation for efficient synthesis of histone proteins
Ruixuan R. Yu, Santosh K. Mahto, Kurt Justus, Mallory M. Alexander, Cecil J. Howard, and Jennifer J. Ottesen
DOI: 10.1039/C5OB02195B


Victoria Corless is currently completing her Ph.D. in organic chemistry with Prof. Andrei Yudin at The University of Toronto. Her research is centred on the synthesis of kinetically amphoteric molecules, which offer a versatile platform for the development of chemoselective transformations with particular emphasis on creating novel biologically active molecules.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)