Free access to June’s HOT articles

These HOT articles published in June 2015 were recommended by our referees and are free* to access for 4 weeks

 

Microscale extraction and phase separation using a porous capillary
Thomas W. Phillips, James H. Bannock and John C. deMello  
Lab Chip, 2015,15, 2960-2967
DOI: 10.1039/C5LC00430F, Paper

Graphical abstract: Microscale extraction and phase separation using a porous capillary

 

Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy
Lingqian Chang, Daniel Gallego-Perez, Xi Zhao, Paul Bertani, Zhaogang Yang, Chi-Ling Chiang, Veysi Malkoc, Junfeng Shi, Chandan K. Sen, Lynn Odonnell, Jianhua Yu, Wu Lu and L. James Lee  
Lab Chip, 2015,15, 3147-3153
DOI: 10.1039/C5LC00553A, Paper

Graphical abstract: Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy

 

A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics
Ying Li, Jie Xuan, Yujun Song, Ping Wang and Lidong Qin  
Lab Chip, 2015, Advance Article
DOI: 10.1039/C5LC00529A, Paper

Graphical abstract: A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics

 

 *Access is free until 17.08.15 through a publishing personal account. It’s quick, easy and free to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A new microfluidic LCD assay for optimising microalgae growth

an article by Claire Weston, PhD student at Imperial College London

Research into biofuels as a replacement for fossil fuels is a hugely important area of research. One particular focus is on cultivating photosynthetic organisms, such as microalgae, as these organisms have a high oil content that can be extracted and converted into biofuels. They are grown in photobioreactors in order to control the growth conditions, and there are a large amount of variable factors that need to be taken into account to find the optimal conditions.

For each new microalgal strain used the conditions need to be optimised, and irradiance screening is of particular importance. Currently, the screening process requires multiple culture flasks, each with their own light source. Recent developments have switched to using microwells, again with individual light sources.

David Sinton and co-workers at the University of Toronto have developed a microfluidic irradiance assay using liquid crystal display (LCD) technology that allows them to rapidly screen irradiance conditions and identify the conditions for optimum growth. Using this technology, they were able to control all irradiance variables (light intensity, time variance, and spectral composition) in over two hundred parallel microreactors.

The diagram below shows the design of their irradiance platform – the LCD screen is lined up so that each pixel is directly below one microreactor, with every pixel individually controlled in order to produce the correct irradiance output. The bacterial growth in each microreactor was characterised by measuring the total fluorescence, emitted by a fluorescent pigment inside the organism.

Design of the irradiance platform

Demonstration of spatial control of microalgal growth

Initially, to demonstrate that their pixel-based method worked, the authors displayed the Toronto University crest on the LCD screen by using high and low irradiance intensities, and you can see from the image that this was successful!

By studying the three major irradiance variables mentioned previously they were able to quantify several important properties, such as the saturation intensity, the threshold frequency for growth and the combined effect of spectral composition and irradiance intensity on growth.

This new method drastically reduces the time needed to screen conditions for bacterial growth and hopefully should have a significant impact on the development of microalgal biofuels.



To download the full article for free* click the link below:
Microalgae on display: a microfluidic pixel-based irradiance assay for photosynthetic growth
Percival J. Graham, Jason Riordon and David Sinton.
Lab Chip, 2015, 15, 3116-3124
DOI: 10.1039/C5LC00527B

—————-

About the webwriter

Claire Weston is a PhD student in the Fuchter Group, at the Imperial College London. Her work is focused on developing novel photoswitches and photoswitchable inhibitors.

—————-

*Access is free until 24/08/2015  through a registered RSC account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

Rapid and sensitive detection of antibiotic resistance on a programmable digital microfluidic platform 


 
 
   
Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy 


 
 
   
Reversible Thermo-Pneumatic Valves on Centrifugal Microfluidic Platforms 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

An acoustofluidic sputum liquefier 


 
   
 
Photopatterned oil-reservoir micromodels with tailored wetting properties 


 
  
 
Resonant dielectrophoresis and electrohydrodynamics for high-sensitive impedance detection of whole-cell bacteria 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

Multiplexed Paper Analytical Device for Measuring Airborne Metal Particulates with Distance-Based Detection 


 
  
 
Transportation, Dispersion and Ordering of Dense Colloidal Assemblies by Magnetic Interfacial Rotaphoresis 


 
   
Gecko Gaskets for Self-Sealing and High Strength Reversible Bonding of Microfluidics 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations 


 
  
 
Whole Blood Human Neutrophil Trafficking in a Microfluidic Model of Infection and Inflammation 


 
  
 
Instantaneous room temperature bonding of a wide range of non-silicon substrates with poly(dimethylsiloxane) (PDMS) elastomer mediated by a mercaptosilane 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

A Microfluidic Dual-well Device for High-throughput Single-Cell Capture and Culture 


 
 
  
Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis 


 
 
  
Capture and enumeration of mRNA transcripts from single cells using a microfluidic device 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New You Tube Videos

High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels 

 

Bubble pump: Scalable strategy for in-plane liquid routing 


 

High-Throughput, Motility-Based Sorter for Microswimmers such as C. elegans 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Free access to May’s HOT articles

These HOT articles published in May 2015 were recommended by our referees and are free* to access for 4 weeks


High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels

Jan Müller, Marco Ballini, Paolo Livi, Yihui Chen, Milos Radivojevic, Amir Shadmani, Vijay Viswam, Ian L. Jones, Michele Fiscella, Roland Diggelmann, Alexander Stettler, Urs Frey, Douglas J. Bakkum and Andreas Hierlemann
Lab Chip, 2015,15, 2767-2780
DOI: 10.1039/C5LC00133A



Fast size-determination of intact bacterial plasmids using nanofluidic channels

K. Frykholm, L. K. Nyberg, E. Lagerstedt, C. Noble, J. Fritzsche, N. Karami, T. Ambjörnsson, L. Sandegren and F. Westerlund
Lab Chip, 2015,15, 2739-2743
DOI: 10.1039/C5LC00378D



Gecko gaskets for self-sealing and high-strength reversible bonding of microfluidics

A. Wasay and D. Sameoto
Lab Chip, 2015,15, 2749-2753
DOI: 10.1039/C5LC00342C

Take a look at our Lab on a Chip Recent HOT Articles Collection!

*Access is free until 24.07.15 through a publishing personal account. It’s quick, easy and free to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Global Engage to host 3 exciting Congresses in October 2015

Global Engage are pleased to announce a set of 3 co-located events,  attracting over 400 attendees and more than 50 poster presentations in 2014.


October 20 – 21 2015, London UK

Radisson Blu Edwardian Heathrow
140 Bath Road
Hayes
UB3 5AW
United Kingdom


Microfluidic Congress

Attracting experts working in microfluidic development and application, including point-of-care diagnostics, single cell analysis, lab-on-a-chip applications, droplet microfluidics and next generation microfluidics, the conference will examine the latest developments in the technologies and techniques being used for progressing medical research in areas such as disease monitoring, diagnostics, organ-on-a-chip and synthetic biology. The challenges and possibilities of microfluidics will also be examined.

Confirmed Speakers

Agenda

More information


Synthetic Biology Congress

Designed for experts working in genome engineering, technological developments, protein design, cell building, bio-manufacturing and gene editing, the Synthetic Biology Congress will examine the latest developments in these fields in both the healthcare and plant biology sectors. New to the conference will be the addition of a third stream, focusing on Investment, Start-Ups, Strategy and Bioethics, for those looking for investment opportunities and seeking to further exploit their research.

Confirmed Speakers

Agenda

More information


qPCR & Digital PCR Congress

Bringing together over 300 industry & academic experts working in areas such as molecular biology/diagnostics, gene expression, genomics, biomarkers, pathogen detection, GMO, mRNA, NGS, bioinformatics and data management, the congress will examine the latest developments, opportunities and applications of both dPCR and qPCR through case studies across diverse areas such as oncology, virology, infectious diseases, vaccines, prenatal diagnosis, clinical applications, microbiology, food microbiology, plant/ecology genomics and other novel applications.

Confirmed Speakers

Agenda

More information

We look forward to seeing you in London!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)