The Sphere wins the 2014 Art in Science Competition

Congratulations to David Castro, winner of Under the Looking Glass: Art from the World of Small Science, sponsored by NIST and Lab on a Chip.

The winning photograph for the seventh annual art in science competition was announced last week at the µTAS 2014 Conference. The research group, from the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia were presented with a certificate and a financial reward. Their photograph will be featured on the cover of an upcoming issue of Lab on a Chip. Make sure you don’t miss it – register for our e-alerts now!

And the winning photograph is… THE SPHERE

More about ‘The Sphere’

Photographed by David Castro and David Conchouso, is the top view of a rotating 40uL aqueous droplet, suspended at the interface between two fluids, inside a square cuvette. The droplet contains an assay of functionalized latex beads, agglutinating in the presence of human C-reactive protein. This entry was selected as the winning photograph due to its aesthetic eye appeal, artistic allure and scientific merit.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

Design of a 2D no-flow chamber to monitor hematopoietic stem cells

Multiplexed Fluidic Plunger Mechanism for the Measurement of Red Blood Cell Deformability

A droplet-to-digital (D2D) microfluidic device for single cell assays

Self-Powered One-Touch Blood Extraction System: Novel Polymer-Capped Hollow Microneedle Integrated with Pre-Vacuum Actuator

A Quantitative Microfluidic Angiogenesis Screen for Studying Anti-Angiogenic Therapeutic Assay

Inducing microscopic thermal lesions for the dissection of functional cell networks on a chip

Electrokinetic Study on 3D Nanochannel Networks Constructed by Spatially Controlled Nanoparticle Assembly

Droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings

A Siphonage Flow and Thread-based Low-cost Platform Enables Quantitative and Sensitive Assay

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lectureship presented to Sangeeta Bhatia

Congratulations to Dr. Sangeeta N. Bhatia, winner of  the 2014 Corning Inc./Lab on a Chip Pioneers of Miniaturisation Lectureship.


The picture shows Lab on a Chip Executive Editor, Harpal Minhas (Left) and Director of Polymer processing in Organic & Biochemical Technologies, Science & Technology at Corning Incorporated, Ed Fewkes (right) presenting Sangeeta (middle) with her award earlier this week at the µTAS 2014 Conference.

The 9th ‘Pioneers of Ministurisation‘ Lectureship, is for extraordinary or outstanding contributions to the understanding or development of miniaturised systems and was presented to Dr Bhatia at the µTAS 2014 Conference in San Antonio, Texas in October 2014. Dr Bhatia received a certificate, $5000 and gave a short lecture at the conference. Further information, including past winners, can be viewed on our homepage.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

September’s HOT Free Articles

These HOT articles, published in September 2014 were recommended by our referees and are free* to access for 4 weeks

1000-fold sample focusing on paper-based microfluidic devices
Tally Rosenfeld and Moran Bercovici
Lab Chip, 2014,14, 4465-4474
DOI: 10.1039/C4LC00734D

A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures
Po-Hsun Huang, Nitesh Nama, Zhangming Mao, Peng Li, Joseph Rufo, Yuchao Chen, Yuliang Xie, Cheng-Hsin Wei, Lin Wang and Tony Jun Huang
Lab Chip, 2014,14, 4319-4323
DOI: 10.1039/C4LC00806E

Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering
Siwei Li, Peter Glynne-Jones, Orestis G. Andriotis, Kuan Y. Ching, Umesh S. Jonnalagadda, Richard O. C. Oreffo, Martyn Hill and Rahul S. Tare
Lab Chip, 2014,14, 4475-4485
DOI: 10.1039/C4LC00956H


Take a look at our Lab on a Chip 2014 HOT Articles Collection!

*Access is free until 28.11.14 through a publishing personal account. It’s quick, easy and free to register!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New YouTube Videos

ElectroTaxis-on-a-Chip (ETC): an Integrated Quantitative High-throughput Screening Platform for Electrical Field-Directed Cell Migration 

 
 
  
 
A 3D-Printed Microcapillary Assembly for Facile Double Emulsion Generation 

 
  
 
 
The pumping lid: Investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications 

 
   
 
Chip-off-the-old-rock: The study of reservoir-relevant geological processes with real-rock micromodels 

 
 
  
 
Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE  

 
 
  
 
Controlled Incremental Filtration:  A simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles 

 
 
  
Pressure Stabilizer for Reproducible Picoinjection in Droplet-based Microfluidic Systems 

 
 
  
 

Ultra-rapid prototyping of flexible, multi-layered microfluidic devices via razor writing 

 
 
  
Manipulating and quantifying temperature-triggered coalescence by microcentrifugation 
 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Oil reserves put under the microscope with new lab-on-a-rock

a ChemistryWorld article by Susannah May

The microfluidic model is etched into a calcite crystal

Scientists in Canada have developed a new microfluidic model carved from rock, which can replicate the conditions found in underground oil reservoirs in a laboratory with more accuracy than ever before. Using it to study the processes that occur in these reservoirs could lead to greater oil yields.

David Sinton’s group, at the University of Toronto, hope that the model they’ve developed will allow them to properly study the rock structure, and see how it’s affected by oil extraction techniques. The techniques could then be optimised to make them much more efficient.

To read the full article please visit ChemistryWorld.

Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels*
Wen Song, Thomas W. de Haas, Hossein Fadaei and David Sinto.
Lab Chip
, 2014, Advance Article
DOI: 10.1039/C4LC00608A

*Access is free through a registered RSC account until 13 November 2014 – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dolomite and Lab on a Chip Productizing Science® Competition 2015

Submission Deadline 30th April 2015

Have you made a great scientific discovery but are not sure how to convert it into a commercially successful product?

The Dolomite Centre, in collaboration with Lab-on-a-Chip journal and Integrative Biology journal are pleased to announce that the Dolomite and Lab on a Chip Productizing Science® Competition 2015 will open on the 1st of October 2014

Click on the links below to find out more:

What is the competition about?

How do I enter?

Important dates

Requirements for participation and abstract guidelines

Good Luck!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Video Competition at microTAS 2014!

Lab on a Chip is proud to announce the first μTAS Video Competition, created in partnership with Dolomite Microfluidics and supported by the CBMS (the Chemical and Biological Microsystems Society).

We invite registered μTAS participants to submit short videos (see full conditions of entry below) that are either scientifically or educationally focused. Videos may be fun, artistic or just surprising and unusual in order to meet these criteria.

Dolomite Microfuidics, innovators in microfluidic solutions, have generously agreed to support this competition with $2500 worth of Dolomite equipment as the prize.

If you think you have the necessary visual science to take home the prize money, have a read of the entry conditions below!

Deadline 10th October 2014

Video Award Submission Process – Easy 3 Step Process

Step 1. Sign-In to the Electronic Form Using Your Registration Number (submissions can be made between July 25 and October 10, 2014. Form available at www.microTAS2014.org from July 25)

Please have your Abstract/Manuscript Number accessible. If you are unable to locate your Abstract/Manuscript Number, please contact info@microTAS2014.org.

Step 2. Fill in Remaining Information on Electronic Submission Form

Please fill in remaining information on the electronic submission form including title of image and your caption.

Step 3. Upload Your Video

All entries are to be submitted in MP4 or MOV format online via this website. Entries will not be accepted by email, fax, or post. Once your entry has been successfully uploaded and submitted, you will be given an entry number and you will be sent a confirmation email with the information you provided, minus the image. The ability to submit an image will close Friday, 10 October 2014 at 23:59 Honolulu, Hawaii, USA time (HST. GMT minus 10 hours).


Conditions of entry:

1. Only registered participants can take part/submit videos

2. Videos must be either scientific (demonstrating interesting aspects) or educational (enhancing understanding) with respect to micro or nanofluidics

3. Videos can be presented in a fun way

4. Videos can be presented in an artistic way

5. Videos can be presented in a surprising or unusual way

6. Videos can be enhanced by audio, animations or annotations, if necessary

7. Videos should be no longer than 2 minutes in length and file sizes must be compressed as much as possible for submission

8. Videos must be viewable on a PC without bespoke software

9. All submissions are submitted on the basis that they may be used by Lab on a Chip and/or CBMS for promotional purposes in any form

10. Judging by an international panel of judges will take place at μTAS 2014. The judge’s decision will be final and no discussion will be entertained.

11. The prize will be awarded at μTAS 2014 and a written voucher  for the equipment will be handed over to the person submitting the winning entry.


Finally, just for a bit of inspiration, here’s a classic Lab on a Chip video from our YouTube Channel…enjoy!


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Sorting by Surfing: particles separate by riding acoustic waves

Collaborators across the University of Augsburg, Harvard University, and the University of Glasgow create a fluorescence-activated cell sorter relying on acoustofluidics to guide particles to their final location.

Traditional fluorescence-activated cell and droplet sorting (FACS, FADS) machines are expensive and require considerable time for analysis as well as maintenance (i.e., rinsing and cleaning of tubing to prepare for RNase-free processing). Cheap and disposable microfluidic devices can alleviate the expense and maintenance required, but still lag in particle sorting speed because they depend on fluidic, dielectric, and magnetic actuation to direct particles after fluorescence interrogation.

Lothar Schmid, David Weitz, and Thomas Franke overcame these issues by using traveling surface acoustic waves (SAWs) to drive particles into select channels based on readout of a fluorescent signal. The group oscillated PDMS structures from below by embedded interdigitated transducers to achieve focused acoustic radiation forces which gently moved droplets and cells via acoustic streaming.

The group was able to achieve sorting independent of cell size and compressibility on the order of 3000 particles/second into multiple outlet channels. This fast separation of particles given fluorescence signal readout enables efficient sorting of populations which vary widely in shape and volume. Further, the particles did not have to be first encapsulated into drops. This simplification avoids biohazard aerosol formation, provides higher signal to noise on the fluorescent signal interrogation, and streamlines the separation process. The group demonstrated gentle sorting of melanoma cells in a single fluid based on metabolic activity and membrane integrity. It will be exciting to see how acoustic streaming can further be used to direct particles to aid rare cell separations and cell isolations from complex samples.

You can download the full article for free* until the 24th October 2014:

Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter
Lothar Schmid, David A. Weitz, and Thomas Franke. Lab Chip, 2014, 14, 3710-3718.
DOI: 10.1039/C4LC00588K

*Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A chemical time capsule

Written by Victoria Richards

Inspired by tree rings, scientists have designed a sensing device that records chemical information over time as spatial patterns.

The transformation of time-varying signals into spatially-varying signals is fundamental for recording temporal information. For trees, growth rings that form throughout their lifetime provide a historical record of their growth conditions. Now, a team led by Sindy Tang at Stanford University, US, have designed a time capsule to record information about the occurrence of chemical events.

To read the fill article please visit Chemistry World.

Time capsule: an autonomous sensor and recorder based on diffusion–reaction
Lukas C. Gerber, Liat Rosenfeld, Yunhan Chen and Sindy K. Y. Tang  
Lab Chip, 2014, Advance Article
DOI: 10.1039/C4LC00640B, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)