Membrane-less water splitting device

A water splitting electrolyser typically contains an ion-conducting membrane which separates the electrodes and keeps the oxygen and hydrogen apart, preventing explosion. However, these membranes are expensive and thus the development of a membrane-less electrolyser is an exciting advance. Researchers at Swiss Federal Institute of Technology Lausanne, led by Demetri Psaltis, have developed such a device by exploiting the Segré–Silberberg effect. The oxygen and hydrogen are kept separate as the distance between the two electrodes is less than a few hundred micrometres and they do not mix because lift forces in the narrow passage push them towards the wall they evolved from.This is a microfluidic device that provides promising proof-of-concept and the group are now attempting to scale up.

Want to know more?

Read the full article in Chemistry World by Isobel Marr.

Or, take a look at the original article which is free to access untill 1st June 2015:

A membrane-less electrolyzer for hydrogen production across the pH scale” by S. Mohammad H. Hashemi,  Miguel A. Modestino and Demetri Psaltis, DOI:10.1039/C5EE00083A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

One Response to “Membrane-less water splitting device”

  1. It’s nice to know it! Thank you for sharing the news

Leave a Reply

*