Nanoscale Most-Read Q3 2011

Top 25 most-read Nanoscale articles for Q3

Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics
Jun Wang, Xukai Xin and Zhiqun Lin
DOI: 10.1039/C1NR10425J

The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices
Xin Zhao, Beatriz Mendoza Sánchez, Peter J. Dobson and Patrick S. Grant
DOI: 10.1039/C0NR00594K

Inorganic nanostructures grown on graphene layers
Won Il Park, Chul-Ho Lee, Jung Min Lee, Nam-Jung Kim and Gyu-Chul Yi
DOI: 10.1039/C1NR10370A

Graphene edges: a review of their fabrication and characterization
Xiaoting Jia, Jessica Campos-Delgado, Mauricio Terrones, Vincent Meunier and Mildred S. Dresselhaus
DOI: 10.1039/C0NR00600A

In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures
Wufeng Chen and Lifeng Yan
DOI: 10.1039/C1NR10355E

Conjugated polymers/semiconductor nanocrystals hybrid materials—preparation, electrical transport properties and applications
Peter Reiss, Elsa Couderc, Julia De Girolamo and Adam Pron
DOI: 10.1039/C0NR00403K

Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers
Amirali Popat, Sandy Budi Hartono, Frances Stahr, Jian Liu, Shi Zhang Qiao and Gao Qing (Max) Lu
DOI: 10.1039/C1NR10224A

Li ion battery materials with core–shell nanostructures
Liwei Su, Yu Jing and Zhen Zhou
DOI: 10.1039/C1NR10550G

Semiconductor nanostructure-based photovoltaic solar cells
Genqiang Zhang, Scott Finefrock, Daxin Liang, Gautam G. Yadav, Haoran Yang, Haiyu Fang and Yue Wu
DOI: 10.1039/C1NR10152H

Controlled assembly of plasmonic colloidal nanoparticle clusters
José M. Romo-Herrera, Ramón A. Alvarez-Puebla and Luis M. Liz-Marzán
DOI: 10.1039/C0NR00804D

Quantum sized, thiolate-protected gold nanoclusters
Rongchao Jin
DOI: 10.1039/B9NR00160C

Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films
Jun Ge, Guanghui Cheng and Liwei Chen
DOI: 10.1039/C1NR10424A

Engineered nanoparticles for biomolecular imaging
Morteza Mahmoudi, Vahid Serpooshan and Sophie Laurent
DOI: 10.1039/C1NR10326A

2D materials: to graphene and beyond
Rubén Mas-Ballesté, Cristina Gómez-Navarro, Julio Gómez-Herrero and Félix Zamora
DOI: 10.1039/C0NR00323A

Surfactant-assisted, shape-controlled synthesis of gold nanocrystals
Junyan Xiao and Limin Qi
DOI: 10.1039/C0NR00814A

Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition
Jonathan R. Bakke, Katie L. Pickrahn, Thomas P. Brennan and Stacey F. Bent
DOI: 10.1039/C1NR10349K

Microwave chemistry for inorganic nanomaterials synthesis
Idalia Bilecka and Markus Niederberger
DOI: 10.1039/B9NR00377K

Review on the progress in synthesis and application of magnetic carbon nanocomposites
Maiyong Zhu and Guowang Diao
DOI: 10.1039/C1NR10165J

Sized controlled synthesis, purification, and cell studies with silicon quantum dots
Amane Shiohara, Sujay Prabakar, Angelique Faramus, Chia-Yen Hsu, Ping-Shan Lai, Peter T. Northcote and Richard D. Tilley
DOI: 10.1039/C1NR10458F

Solution synthesis of one-dimensional ZnO nanomaterials and their applications
Benjamin Weintraub, Zhengzhi Zhou, Yinhua Li and Yulin Deng
DOI: 10.1039/C0NR00047G

Upscaling of polymer solar cell fabrication using full roll-to-roll processing
Frederik C. Krebs, Thomas Tromholt and Mikkel Jørgensen
DOI: 10.1039/B9NR00430K

PEG-templated mesoporous silica nanoparticles exclusively target cancer cells
Luigi Pasqua et al.
DOI: 10.1039/C1NR10253B

Stabilization and functionalization of iron oxide nanoparticles for biomedical applications
Esther Amstad, Marcus Textor and Erik Reimhult
DOI: 10.1039/C1NR10173K

Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets
Quanjun Xiang, Jiaguo Yu and Mietek Jaroniec
DOI: 10.1039/C1NR10610D

Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications
Tao Chen, Mohammed Ibrahim Shukoor, Yan Chen, Quan Yuan, Zhi Zhu, Zilong Zhao, Basri Gulbakan and Weihong Tan
DOI: 10.1039/C0NR00646G

We invite you to submit your research today.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polystyrene fiber mats could soak up oil spills

Nanoscale ‘HOT’ article

Scientists from China have synthesized novel polystyrene (PS) fibrous mats consisting of highly porous fibers which show much higher oil absorption capacities compared to the commercially available polypropylene fibers.

PS fibersThe authors say that such regulation of micro- and nanostructures of the PS fibers will widen the range of their applications in self-cleaning materials, ultra-high sensitivity sensors, tissue engineering and ion exchange materials.

Read the Nanoscale article today:

Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption
Jinyou Lin, Bin Ding, Jianmao Yang, Jianyong Yu and Gang Sun
Nanoscale, 2012, DOI: 10.1039/C1NR10895F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Simple synthesis of potentially very useful nanostructures

SEM images of materialsProfessor Kripa Varanasi and his team at the Massachusetts Institute of Technology have discovered a method of producing copper oxide nanowires on the surface of copper particles: a simple sintering process produces the structures. The amount of nanowire coverage observed is related to the size of the original copper particle.

The authors predict various applications of the structures including in thermal management – cooling boilers for example – or in catalysis.

The team are currently trying testing other metals to see if they react in the same way.

You can read more about this exciting work in their MIT press release.

Read the full Nanoscale paper today!

Size-dependent thermal oxidation of copper: single-step synthesis of hierarchical nanostructures
Christopher J. Love, J. David Smith, Yuehua Cui and Kripa K. Varanasi
DOI: 10.1039/C1NR10993F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

What do zinc oxide and a rosy-faced lovebird have in common?

It’s all to do with light emission. The barbs on the parrot’s feather contain spongy 3D amorphous macroporous structures that produce a photonic band gap of 550nm, which coincides with the visible emission range of zinc oxide materials. So, scientists have used the parrot’s feather as a template to make zinc oxide photonic nanostructrues.

Zinc oxide has been studied for its UV light emitting property to make new classes of optical devices such as ZnO lasers. In this capacity, it’s important to suppress the visible emission caused by zinc or oxygen defects in the zinc oxide materials. But, its ordered structure leads to an unstable modulation of the emission spectra and limits its applications. Combining zinc oxide materials with photonic amorphous structures with stable photonic band gaps is therefore important, say the researchers.

Their new material reduces the visible emission and amplifies the UV emission.

Read the Nanoscale paper hot off the press today:

Fabrication of ZnO photonic amorphous diamond nanostructure from parrot feather for modulated photoluminescence properties
Z Zhang, K Yu, N Liao, H Yin, L Lou, Q Yu, Y Liao and Z Zhu,
Nanoscale, 2011, DOI: 10.1039/c1nr11079a

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top Ten most-read Nanoscale articles in September

This month sees the following articles in Nanoscale that are in the top ten most accessed:

Li ion battery materials with core–shell nanostructures 
Liwei Su, Yu Jing and Zhen Zhou 
Nanoscale, 2011, 3, 3967-3983 
DOI: 10.1039/c1nr10550g 

Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications 
Xin Du and Junhui He 
Nanoscale, 2011, 3, 3984-4002 
DOI: 10.1039/c1nr10660k 

6.5% efficient perovskite quantum-dot-sensitized solar cell 
Jeong-Hyeok Im, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park and Nam-Gyu Park 
Nanoscale, 2011, 3, 4088-4093 
DOI: 10.1039/c1nr10867k 

Inorganic nanostructures grown on graphene layers 
Won Il Park, Chul-Ho Lee, Jung Min Lee, Nam-Jung Kim and Gyu-Chul Yi 
Nanoscale, 2011, 3, 3522-3533 
DOI: 10.1039/c1nr10370a 

One-pot formation of SnO2 hollow nanospheres and a-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties
Jun Song Chen, Chang Ming Li, Wen Wen Zhou, Qing Yu Yan, Lynden A. Archer and Xiong Wen Lou
Nanoscale, 2009, 1, 280-285 
DOI: 10.1039/b9nr00102f 

Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite 
Yanyuan Wen, Hanming Ding and Yongkui Shan 
Nanoscale, 2011, 3, 4411-4417 
DOI: 10.1039/c1nr10604j 

Graphene edges: a review of their fabrication and characterization 
Xiaoting Jia, Jessica Campos-Delgado, Mauricio Terrones, Vincent Meunier and Mildred S. Dresselhaus 
Nanoscale, 2011, 3, 86-95 
DOI: 10.1039/c0nr00600a 

Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism 
Jianan Shen, Qianjun He, Yu Gao, Jianlin Shi and Yaping Li 
Nanoscale, 2011, 3, 4314-4322 
DOI: 10.1039/c1nr10580a 

Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties
Hao Bin Wu, Jun Song Chen, Xiong Wen (David) Lou and Huey Hoon Hng 
Nanoscale, 2011, 3, 4082-4084 
DOI: 10.1039/c1nr10854a 

Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties 
Chengzhou Zhu, Ping Wang, Li Wang, Lei Han and Shaojun Dong 
Nanoscale, 2011, 3, 4376-4382 
DOI: 10.1039/c1nr10634a 

Why not take a look at the articles today and blog your thoughts and comments below.

Fancy submitting an article to Nanoscale? Then why not submit to us today or alternatively email us  your suggestions.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscience: Killing bacteria in broad daylight

‘HOT’ article: Killing bacteria in broad daylight

Scientists have coated a TiO2–InVO4 film onto a glass layer and observed that the coating kills E. coli under ambient light.

Titanium oxide has been used by itself before, but it has to be activated with ultraviolet light. Adding InVO4 – a stable narrow band gap semiconductor – ensures that the coating can absorb visible light. Now, the coating can be activated in daylight, increasing its potential applications in disinfecting surfaces.

 Read the ‘HOT’ Nanoscale article today:

Understanding bactericidal performance on ambient light activated TiO2-InVO4 nanostructured films
Z He, Q Xu and T T Y Tan,
Nanoscale, 2011
DOI: 10.1039/c1nr11126d

 killing bacteria

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Probes inspired by butterflies

Inspired by the feeding tube of butterflies, US scientists have made a flexible and porous artificial proboscis that could be used to collect tiny liquid samples. The probe can be operated remotely to collect hazardous liquids.

Konstantin Kornev from Clemson University and his team wanted to find a way to sample miniscule amounts of liquid. They needed a probe that would be flexible and easy to manipulate. After seeing the effective way that butterflies and moths suck up their food using proboscises, they decided to make an artificial version.

‘A proboscis has two types of pores: very small to draw the liquid in and large, to transport the liquid as pipes would do,’ says Kornev. To mimic this system, the team made a bundle of porous polymer fibres and twisted them into a yarn using a new electrospinning technique. Electrospinning works by charging a liquid medium and accelerating it from a high electrical potential to a lower one to produce long fibres. The new part of the technique involves collecting the fibres with rolled brushes that act as arms. The arms are then spun in opposite directions to make a yarn. ‘Twisting these fibres into a yarn was a challenge,’ says Kornev. The yarn’s large interfibre pores provide rapid wicking and the small pores provide a strong capillary action.

 Butterfly

Mimicking a butterfly proboscis: the diagram shows the artificial proboscis absorbing a droplet. The solid black fibre on the left is the artificial proboscis; the grey fibre on the right is a nylon yarn 

To manipulate the proboscis so it could be directed to its target – a droplet or even a single cell or gland – Kornev embedded magnetic particles into the porous polymer so that it could be controlled by applying an electric or magnetic field. With this flexibility, the proboscis can be attached to a microfluidic device for sampling hard to reach areas, in sensors or in forensic probes, or to sample hazardous substances. 

Joshua Edel, an expert in nanobiotechnology from Imperial College London, comments: ‘They are one of the first groups to develop nanoporous flexible probes that work as artificial proboscises. Assuming they can be made in a reproducible manner, I see no reason why this system would not have commercial implications.’  

‘We developed a special automated technique to make reproducible proboscises,’ says Kornev, who is now working on adding a sensing function to the proboscises in the hope of developing a probe that can sample and analyse minute amounts of fluids. 

Holly Sheahan

Read the paper from Nanoscale:

Nanoporous artificial proboscis for probing minute amount of liquids
Chen-Chih Tsai, Petr Mikes, Taras Andrukh, Edgar White, Daria Monaenkova, Oleksandr Burtovyy, Ruslan Burtovyy, Binyamin Rubin, David Lukas, Igor Luzinov, Jeffery R. Owens and Konstantin G. Kornev
Nanoscale, 2011
DOI: 10.1039/c1nr10773a

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Beating the counterfeiters

Scientists from China have created nanoparticles with dual mode colour for anti-counterfeiting ink, making it harder to imitate than current inks.

Lehui Lu and colleagues from the Chinese Academy of Sciences, Changchun, have designed dual mode fluorescent lanthanide doped nanocrystals to make the ink. The nanocrystals display upconversion, in which particles absorb light of one wavelength and emit light of a shorter wavelength, and downconversion, in which a high energy photon is split into two lower energy photons. These are triggered by near infrared and ultraviolet light, respectively, to produce different colours. The crystals would make the ink difficult to replicate if used on important documents as an anti-counterfeiting measure.

Traditional anti-counterfeiting materials only emit one colour so are more easily replicated. Including more colours involves mixing different nanocrystals, which could affect ink quality. Now, ‘colour tuning can be achieved from a single nanocrystal, avoiding a decrease in the ink’s quality’, says Lu.

Beating the counterfeiters

Exposing film stamped with the ink to near infrared light caused a green emission, while under ultraviolet light, a colour change from green to blue was seen

The team bound the nanocrystals to oleic acid, which stabilises them in organic solvents so that they can be applied to paper. They tested the crystals by stamping the ink onto a transparent film. In daylight, the effect was invisible. However, when they shone infrared light on the film the stamped section was clearly seen, with a bright green upconversion emission. When they changed to ultraviolet light, the colour changed to blue because of the downconversion.

The nanocrystals could also be developed for use in biological imaging, as Yadong Li, an expert in lanthanide-doped nanocrystals from Tsinghua University, P. R. China, points out. ‘The near infrared emission is suitable for in vivo imaging, owing to the weak autofluorescence background and deeper penetration,’ he says.

The next step for Lu is to increase the nanocrystals’ quantum yield by increasing the number of molecules participating in the process. ‘Compared to traditional organic dyes,’ explains Lu, ‘the quantum yield of oleic acid-stabilised lanthanide doped fluoride nanocrystals is relatively low. Improving the quantum yield is a big challenge.’

Rachel Cooper

Read the paper from Nanoscale:

Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting
Yanlan Liu, Kelong Ai and Lehui Lu
Nanoscale, 2011
DOI: 10.1039/c1nr10752f

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanocacti are good photoanodes for dye-sensitised solar cells

FESEM imageNovel Zn-Sn-O nanocactus films, synthesized by a simple hydrothermal method, display overall power conversion efficiencies (PCEs) of 2.21 per cent when used as the photoanode of dye-sensitised solar cells. After treatment with TiCl4 the PCE rises to 6.62 per cent, comparing favourably with P25 DSSCs (6.97 per cent).

The authors suggest that such materials could have excellent prospects for use as photoanodes in DSSCs.

For full details on this exciting work read this HOT Nanoscale article today:

Novel Zn–Sn–O nanocactus with excellent transport properties as photoanode material for high performance dye-sensitized solar cells
Xincun Dou, Nripan Mathews, Qing Wang, Stevin Snellius Pramana, Yeng Ming Lam and Subodh Mhaisalkar
Nanoscale, 2011
DOI: 10.1039/C1NR11083G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Simple route to perpendicularly aligned nanorods

Scientists in Ireland have developed a method to convert perpendicularly aligned  CdS and CdSe nanorods to their silver and copper chalcogenide equivalents. The nanorod dimensions and superlattice order remain unchanged during the process.

Such nanorods have potential applications in solar cells. The authors envisage that this new technique can be extended to other material systems.

Read the full HOT Nanoscale communication to find out more:

A facile spin-cast route for cation exchange of multilayer perpendicularly-aligned nanorod assemblies
Dervla Kelly, Ajay Singh, Christopher A. Barrett, Catriona O’Sullivan, Claudia Coughlan, Fathima R. Laffir, Colm O’Dwyer and Kevin M. Ryan
Nanoscale, 2011
DOI: 10.1039/C1NR11031D

Image of CdS nanorods and Cu7S4 nanorods

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)