Archive for the ‘Themed Issue’ Category

Themed Collections in 2024

Looking back at 2024

An overview of the themed collections  Nano Journal Family in 2024

Nanoscale Horizons

  • Soft wearable sensors: Guest edited by Wenlong Cheng, John Rogers, Alina Rwei, Dae-Hyeong Kim, and Nanshu Lu
  • Catalysis Collection: Guest edited by Marcella Lusardi, Wee-Jun Ong, Huabin Zhang, Tianyi Ma, Vivek Polshettiwar

2025 Collections

  • Nanoscale Horizons 10th Anniversary collection
  • DNA Nanotechnology
  • NUS 120th Anniversary 

 

Nanoscale 

  • Nanocatalysis Collection: Guest Edited by Zhiqun Lin, In Young Kim, Michelle Personick
  • MXene chemistries for biology, medicine and sensing: Guest Edited by Lucia Gemma Delogu, Yury Gogotsi, Acelya Yilmazer, and Maksym Pogorielov
  • Chiral nanomaterials Collection: Jeanne Crassous, David Amabilino, Pengfei Duan, and Nick Kotov
  • Superwetting nanoelectrodes for renewable energy: Xiaoming Sun, Zuankai Wang, Alberto Vomiero, and Alex Bell
  • INST Mohali 10th anniversary Collection: Umesh Waghmare and Amitava Patra
  • Festschrift for the 65th birthday of Santanu Bhattacharya:  Asish Pal, Shyni Varghese, Praveen Kumar Vemula
  • Metal nanoclusters: Sukhendu Mandal, Di Sun, Yuichi Negishi, and Anindita Das
  • Advanced semiconductor nanocrystals: Indranath Chakraborty, Anshuman Nag, Jannika Lauth, Klaus Boldt
  • Celebrating Professor George Whitesides’s 85th Birthday: Eric Simanek
  • Targeted biomedical applications of nanomaterials: Dhiraj Bhatia, Anjali Awasthi, Mukesh Dhanka, Kaushik Chatterjee, Kamlendra Awasthi

Nanoscale Advances:

  • Synthesis, physical properties and applications of advanced nanocrystalline materials: Guest edited by Aurora Rizzo, Ermelinda M. S. Macoas , Raghvendra Singh Yadav, Renjie Chen , Tayebeh Ameri
  • Recent advances in nanocellulose-based composite materials:  Guest edited by Priyanka Sharma, Benjamin Hsiao, Sunil Kumar Sharma
  • Recycling of nanocomposites: Suryasarathi Bose, Indian Institute of Science Bangalore, India
  • Carbon nanomaterials for smart applications: Guest edited by Yeye Wen , Muqiang Jian , Zhenyuan Xia
  • Photocatalytic Materials for Clean Energy, Renewable Chemicals production, and Sustainable Catalysis: Guest Edited Rajeev Ahuja, Rajendra Srivastava

Nanoscale Advances

 Open collections you can get involved with:

  • Carbon nanoarchitectonics: Guest Edited by Katsuhiko Ariga, Lok Kumar Shrestha, and Qingmin Ji. Submit by 31 March 2025
  • Bioinspired devices – advances in bionics, flexible electronics, and robotics: Guest edited by Yao Ni, Lu Yang, and Huanhuan Wei. Submit by 1 May 2025
  • Advanced Catalytic Materials for Energy and Environmental Applications: Guest Edited by Kalliopi Kousi, Eleonara Cali, Manuel Ramos Murillo, Raúl Pérez Hernández and Quan Li. Submit by 31 March 2025.
  • Nanoscale Advances in Innovative Bioengineering: Guest Edited by Su Zheng, Le Zhicheng, and Gu Zhe. Submit by 1 June 2025
  • Ultrafast meets ultrasmall – exploring the unchartered territory of quantum dynamics: Guest Edited by Kristina Rusimova, Tom Siday, and Marcello Righetto. Submit by 1 April 2025.
  • Nanomaterials for catalysis and sensing applications: Guest Edited by Thanh-Danh Nguyen, Hoang Tuan Nguyen, Dinh Quang Khieu and Mita Dasog. Submit by 20 January 2025
  • Nanophotonics, Plasmonics, and Nano-optics: Guest Edited by Viktoriia Babicheva, Yu-Jung (Yuri) Lu, Alexander Shalin, and Dattatray Late. Submit by 31 March 2025

Have an idea for a new themed collection in your area? Get in touch here.

 

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Supramolecular chirality in self-organised systems and thin films

Read the new collection in Nanoscale Advances

We are delighted to introduce our new themed collection titled Supramolecular chirality in self-organised systems and thin films.

Guest Edited by Ludovico Valli (University of Salento, Italy), Simona Bettini (University of Salento, Italy) and Gabriele Giancane (University of Salento, Italy)

 

A message from Ludovico Valli, Simona Bettini and Gabriele Giancane:

As we continue to explore supramolecular chirality, especially in fields like sensing and materials science, it’s clear that this concept will play a pivotal role in shaping innovations across disciplines..”

 

This themed collection in Nanoscale Advances aims to investigate the fascinating world of chiral self-organisation and its applications in various scientific fields.

 

A small selection of the papers are featured below, all open access and free to read.

Helical interfacial modulation for perovskite photovoltaics
Ghewa AlSabeh, Masaud Almalki, Sitthichok Kasemthaveechok, Marco A. Ruiz-Preciado, Hong Zhang, Nicolas Vanthuyne, Paul Zimmermann, Daphne M. Dekker, Felix Thomas Eickemeyer, Alexander Hinderhofer, Frank Schreiber, Shaik M. Zakeeruddin, Bruno Ehrler, Jeanne Crassous, Jovana V. Milić and Michael Grätzel
Nanoscale Adv., 2024, 6, 3029-3033. DOI: 10.1039/D4NA00027G

Chiral porphyrin-SiO2 nano helices-based sensors for vapor enantiomers recognition
Ilaria Di Filippo, Zakaria Anfar, Gabriele Magna, Piyanan Pranee, Donato Monti, Manuela Stefanelli, Reiko Oda, Corrado Di Natale and Roberto Paolesse
Nanoscale Adv., 2024, 6, 4470-4478. DOI: 10.1039/D4NA00217B

Chiral induction in substrate-supported self-assembled molecular networks under nanoconfinement conditions
Zeno Tessari, Tamara Rinkovec and Steven De Feyter
Nanoscale Adv., 2024, 6, 892-901. DOI: 10.1039/D3NA00894K

 

We hope you enjoy reading this themed collection!

 

Did you know?

At Nanoscale Advances, our themed collections are built by collaboration between our Guest Editors and expert Associate Editors. Our Guest Editors guide the scope and curate the contributions in our collections but all submissions are handled through peer review by our team of resident Associate Editors. This means that as an author you receive a consistent experience, and as a reader you can trust the quality of the science being presented.

If you have an idea for a topical collection in your research field, we’d love to hear from you! Get in touch here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed Collection: Metal Nanoclusters

Metal Nanoclusters

Guest edited by Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das

A promotional graphic for the metal nanoclusters collection, with photos of guest editors Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das

Discover the latest research in this Nanoscale collection. 

Atomically precise metal nanoclusters are novel materials that have the potential to address everyday needs from energy to health. Luminescent metal clusters can be used for effective and efficient energy harvesting and conversion technologies, while water-soluble luminescent metal clusters offer more efficient and personalized biomedical approaches. Furthermore, nanoclusters can be used as building units to form higher-dimensional cluster-assembled materials and can modulate the optoelectronic properties of desired device materials. To create a hierarchy of structures and applications existing collaboration and foster new ones and explore opportunities for students.

This collection in Nanoscale aims to look at new structures, photophysical, chemical and electrochemical catalysis reactions, and structure-property correlations within the themes of atomically precise metal nanoclusters.

We invite you to discover the latest research from metal nanoclusters collection and to read the introductory editorial written by guest editors Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das

All articles in the collection are free to read until the 30th of January 2025.

Read the introductory editorial

Check out some of the featured articles below:

the graphical abstract image depicting a overview on the review on atomic-level design of biomimetic iron–sulfur clusters for biocatalysis

 Electronic state modulation of Ag30 nanoclusters within a ring-shaped polyoxometalate

Sufei Zhou, Di Liu,  Kelong Fan, Haile Liu,  and  Xiao-Dong Zhang

Nanoscale,2024,16, 18644-18665

the graphical abstract image depicting the electronic state modulation of Ag30 nanoclusters within a ring-shaped polyoxometalate

Atomic-level design of biomimetic iron–sulfur clusters for biocatalysis

Daiki Yanai,  Kentaro Yonesato,   Soichi Kikkawa,  Seiji Yamazoe,  Kazuya Yamaguchi  and  Kosuke Suzuki.

Nanoscale, 2024,16, 18383-18388

the graphical abstract image depicting Synergism between copper and silver nanoclusters induces fascinating structural modifications, properties, and applications

Synergism between copper and silver nanoclusters induces fascinating structural modifications, properties, and applications

 Priyanka Sharma, Mainak Ganguly, and Ankita Doib

 Nanoscale, 2024,16, 18666-18683

 

the graphical abstract image depicting ditopic ligand effects on solution structure and redox chemistry in discrete [Cu12S6] clusters with labile Cu–S bonds  

Ditopic ligand effects on solution structure and redox chemistry in discrete [Cu12S6] clusters with labile Cu–S bonds

Michael J. Trenerry and  Gwendolyn A. Bailey

Nanoscale, 2024,16, 16048-16057.

We hope you enjoy reading some of the latest research on metal nanoclusters!

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Find out more about the journal on our platform and send your submissions now. We look forward to considering your research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection: Micro- and Nano-Motors

Micro- and Nano-Motors

Guest edited by Martin Pumera, Xing Ma, Samuel Sánchez Ordóñez and Li Zhang ‬‬

Micro/nano-motors (MNMs) are miniaturized devices or structures that can covert other forms of energy harnessed from the surrounding environment into mechanical motion. As an emerging technology with a highly multidisciplinary nature, MNMs involve research efforts from materials science, physics, chemistry, biomedical engineering, etc., and in virtue of their small size and controllable mobility, they have demonstrated revolutionary potential in sensing, biomedicine and environmental applications among others. We are delighted to share this special collection in Nanoscale, and Journal of Materials Chemistry B dedicated to the state of the art of micro- and nanomachines, with emphasis on the design and fabrication, propulsion mechanism, imaging, safety, and application of micro- and nano-motors in a variety of fields.

Professor Martin PumeraProfessor Xing Ma ,  Professor Samuel Sánchez Ordóñez, and Professor Li Zhang served as guest editors for this collection, discussing the virtue of micro and nano motors’ small size and controllable mobility, while highlighting the revolutionary potential applications, in their introductory editorial.

You can explore the collection and read the introductory editorial from our guest editors below, with all articles free to access until the end of December 2024. 

Read the introductory editorial

Check out some of the featured articles:

Graphical abstract: Active therapy based on the byproducts of micro/nanomotorsActive therapy based on the by products of micro/nanomotors

Nanoscale, 2023,15, 953-962, DOI: 10.1039/D2NR05818A

Graphical abstract: Shape-controlled movement of Zn/SU-8 micromotors

Shape-controlled movement of Zn/SU-8 micromotors

Nanoscale Adv., 2024, Advance Article, DOI: 10.1039/D4NA00721B

Graphical abstract: Eliminating waste with waste: transforming spent coffee grounds into microrobots for water treatment

Eliminating waste with waste: transforming spent coffee grounds into microrobots for water treatment

Nanoscale, 2023,15, 17494-17507, DOI:10.1039/D3NR03592A

 

 

Graphical abstract: Light-powered swarming phoretic antimony chalcogenide-based microrobots with “on-the-fly” photodegradation abilitiesLight-powered swarming phoretic antimony chalcogenide-based microrobots with “on-the-fly” photodegradation abilities

Anna Jancik-Prochazkova,

Nanoscale, 2023,15, 5726-5734, DOI:10.1039/D3NR00098B

 

We hope you enjoy reading this collection and look forward to showcasing more work on micro and nano motors in the future. Please continue to submit your exciting work to Nanoscale and Journal of Materials Chemistry B.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open Call for Papers – Optical Nanomaterials for Biomedical and Environmental applications

Open Call for Papers – Optical Nanomaterials for Biomedical and Environmental Applications

Guest Edited by Yun Suk Huh, Mingdong Dong, Zegao Wang , Marzieh Ramezani Farani, Shuai Zhang and Mohammad Tavakkoli Yaraki.

Nanoscale and Nanoscale Advances are pleased to announce an open call for papers to an upcoming themed collection on optical nanomaterials for biomedical and environmental applications. This collection is guest edited by Professor Yun Suk Huh (Inha University, South Korea),  Professor Mingdong Dong (Aarhus University, Denmark), Professor Zegao Wang (Sichuan University, China), Dr. Marzieh Ramezani Farani (Inha University, South Korea),  Dr.Shuai Zhang (Pacific Northwest National Laboratory, USA),  and Dr. Mohammad Tavakkoli Yaraki (Macquarie University, Australia).

Optical nanomaterials open call for papers promotional graphic. Includes photos of the guest editors Yun Suk Huh, Mingdong Dong, Zegao Wang , Marzieh Ramezani Farani, Shuai Zhang and Mohammad Tavakoli Yaraki.

To achieve high selectivity and sensitivity in detecting and quantifying analytes, biosensors with a high signal-to-noise ratio are essential. Optical biosensors have gained significant attention over the past decade. Fluorescent and plasmonic nanomaterials are two key types of optical nanomaterials used in various biomedical and environmental applications. Advances in this field are driven by the discovery of new nanomaterials and techniques. These ultrasensitive optical probes are employed for monitoring and detecting pollutants, as well as for in-vitro and in-vivo diagnosis, visualization, and treatment of severe diseases. They are utilized in both colloidal and planar systems, contributing to improved quality of life and a promising future for research.

The current special issue aims to highlight the significance of optical nanomaterials in detecting, quantifying, visualizing, and analyzing biomedical and environmental topics. It will cover a range of materials and techniques, including:

  • Fluorescent nanomaterials (e.g., organic molecules, metal nanoclusters, carbon dots, quantum dots)
  • Plasmonic nanostructures (e.g., metal nanoparticles, planar metal structures)
  • Various biosensing technologies (e.g., fluorescent and colorimetric biosensors, SERS-based probes, SRS microscopy, microfluidic devices, lateral flow assays)
  • Drug delivery
  • Cancer treatment

This call for papers is open for the following article types:

  • Full papers
  • Review Articles

 

Open for submissions until 27 February 2025


How to submit

Articles can be submitted at any time before the deadline via the journal’s online submission system for Nanoscale or Nanoscale Advances. Accepted articles will be published in a citeable format in regular journal issues as soon as possible and collated into the themed collection online. We are looking forward to receiving your submission, which is welcomed any time before the 27 February 2025 so that this collection can become available to you and the community as soon as possible.

Please note that Nanoscale is a hybrid (transformative) journal, and articles can be published either via the usual subscription model or open access (article processing charges are required). Nanoscale Advances is gold open access and requires article processing charges. Your institution may have a read & publish deal in place with the RSC which means you may be able to publish open access in our hybrid journals with fees covered by the institution. Check our journal finder to see if you are eligible.

When ready, please submit your article directly to the submission system for Nanoscale or Nanoscale Advances. Please mention that your submission is a contribution to the “Optical Nanomaterials for Biomedical and Environmental Applications collection in the “Themed Issues” section of the submission form and is in response to the Open Call.

Please note that all submissions will be subject to initial assessment and rigorous peer review to meet the usual high standards of Nanoscale or Nanoscale Advances. In some cases, the Associate Editors may offer authors a transfer to Nanoscale Advances from Nanoscale if more appropriate. All articles featured in the collection must be in scope and as such final inclusion is not guaranteed and will be up to the discretion of the guest editors.

We look forward to receiving your latest work and considering it for this collection. Please do get in touch at nanoscale-rsc@rsc.org if you have any questions at all.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanocatalysis Beyond CO2 Activation

Nanoscale Advances with the guidance and support of Guest Editors Professor Yude Su (University of Science & Technology of China) and Professor Yanwei Lum (National University of Singapore) are proud to present a collection of manuscripts on Nanocatalysis Beyond CO2 Activation, including but not limited to nitrogen reduction, upgrading of biomass derived molecules and hydrogen peroxide production. Of interest here is the important role that nanoscience can play in the development of electrocatalytic materials to efficiently facilitate these reactions.

 

We would like to highlight the following papers;

Boosting activity and selectivity of glycerol oxidation over platinum–palladium–silver electrocatalysts via surface engineering
Yongfang Zhou, Yi Shen*, Xuanli Luo, Guo Liu & Yong Cao
Nanoscale Adv., 2020,2, 3423-3430
A series of platinum–palladium–silver nanoparticles with tunable structures were synthesized for glycerol electro-oxidation in both alkaline and acidic solutions.

Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions
Juan Wen, Linqing Zuo, Haodong Sun, Xiongwei Wu, Ting Huang, Zaichun Liu, Jing Wang*, Lili Liu*, Yuping Wu*, Xiang Liu &Teunis van Ree
Nanoscale Adv., 2021,3, 5525-5541
Low-dimensional nanomaterials make the road to electrochemical nitrogen reduction reaction clearer!

Pd/Ni-metal–organic framework-derived porous carbon nanosheets for efficient CO oxidation over a wide pH range
Adewale K. Ipadeola, Kamel Eid,*, Aboubakr M. Abdullah*, Rashid S. Al-Hajri* & Kenneth I. Ozoemena*
Nanoscale Adv., 2022,4, 5044-5055
Ni-MOF-derived hierarchical porous carbon nanosheets (Ni-MOF/PC) decorated with Pd nanocrystals (Pd/Ni-MOF/PC) have high electrocatalytic CO oxidation activity in KOH, HClO4, and NaHCO3 electrolytes than Pd/C and Pd/Ni-MOF/C.

Synthesis of polyoxometalate-pillared Zn–Cr layered double hydroxides for photocatalytic CO2 reduction and H2O oxidation
Xiaotong Zhao, Haoyang Jiang*, Yongcheng Xiao & Miao Zhong*
Nanoscale Adv., 2024,6, 1241-1245
This study explores the use of polyoxometalate (POM)-pillared Zn–Cr layered double hydroxides (LDHs) as photocatalysts in CO2 reduction and H2O oxidation. The findings indicate that LDH pillared withSiW12O404− demonstrate promoted photocatalytic performance compared to conventional LDHs intercalated with NO3− andCO32− anions.

This collection is complimentary to other catalysis collections within the Nanoscale journal family and helps to showcase the broad, pioneering and seminal works being published within the field of Catalysis at the Nano scale, such as ‘Photocatalytic Materials for Clean Energy, Renewable Chemicals production, and Sustainable Catalysis’ in Nanoscale Advances, which has recently been promoted in Nanoscale Advances, Photocatalytic Materials for Clean Energy, Renewable Chemicals production, and Sustainable Catalysis Home (rsc.org) and ‘nanocatalysis’ currently ongoing in Nanoscale Nanocatalysis Home (rsc.org)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Photocatalytic Materials for Clean Energy, Renewable Chemicals Production, and Sustainable Catalysis

Read the new collection in Nanoscale Advances

We are delighted to introduce our new themed collection focusing on Photocatalytic Materials for Clean Energy, Renewable Chemicals Production, and Sustainable Catalysis!

Guest Edited by Rajeev Ahuja (Uppsala University, Sweden) and Rajendra Srivastava (Indian Institute of Technology Ropar, India)

This collection features research on photocatalytic materials for green or sustainable applications. A small selection of the papers are featured below, all open access and free to read.

 

Manipulation of interfacial charge dynamics for metal–organic frameworks toward advanced photocatalytic applications
Chien-Yi Wang, Huai-En Chang, Cheng-Yu Wang, Tomoyuki Kurioka, Chun-Yi Chen, Tso-Fu Mark Chang, Masato Sone and Yung-Jung Hsu
Nanoscale Adv., 2024,6, 1039-1058. DOI: 10.1039/D3NA00837A
Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review
Ajay K. Potbhare, S. K. Tarik Aziz, Mohd. Monis Ayyub, Aniket Kahate, Rohit Madankar, Sneha Wankar, Arnab Dutta, Ahmed Abdala, Sami H. Mohmood, Rameshwar Adhikari and Ratiram G. Chaudhary
Nanoscale Adv., 2024,6, 2539-2568. DOI: 10.1039/D3NA01071F
Phase controlled green synthesis of wurtzite (P63mc) ZnO nanoparticles: interplay of green ligands with precursor anions, anisotropy and photocatalysis
Lahur Mani Verma, Ajay Kumar, Aejaz Ul Bashir, Upanshu Gangwar, Pravin P. Ingole and Satyawati Sharma
Nanoscale Adv., 2024,6, 155-169. DOI: 10.1039/D3NA00596H

 

We hope you enjoy reading this themed collection!

 

Did you know?

At Nanoscale Advances, our themed collections are built by collaboration between our Guest Editors and expert Associate Editors. Our Guest Editors guide the scope and curate the contributions in our collections, but all submissions are handled through peer review by our team of resident Associate Editors. This means that as an author you receive a consistent experience, and as a reader you can trust the quality of the science being presented.

If you have an idea for a topical collection in your research field, we’d love to hear from you! Get in touch here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Frontiers in Stimuli-Responsive Nanoplatforms

Read the new collection in Nanoscale Advances

We are delighted to introduce our new themed collection focusing on Frontiers in Stimuli-Responsive Nanoplatforms!

Guest Edited by Prof. Juan C. Cruz (Universidad de los Andes, Colombia) and Prof. Luis H. Reyes (Universidad de los Andes, Colombia).

 

This collection focuses on the recent developments and novel approaches in stimuli-responsive nanoplatforms for drug delivery. Papers highlight the design, synthesis, and application of these nanoplatforms, with an emphasis on their potential to transform therapeutic delivery methods.

A small selection of the papers are featured below, all open access and free to read.

 

 

Long-term in vivo dissolution of thermo- and pH-responsive, 19F magnetic resonance-traceable and injectable polymer implants
Natalia Jirát-Ziółkowska, Martin Vít, Ondřej Groborz, Kristýna Kolouchová, David Červený, Ondřej Sedláček and Daniel Jirák
Nanoscale Adv., 2024,6, 3041-3051. DOI: 10.1039/D4NA00212A
In vitro profiling and molecular dynamics simulation studies of berberine loaded MCM-41 mesoporous silica nanoparticles to prevent neuronal apoptosis
Anurag Kumar Singh, Snigdha Singh, Tarun Minocha, Sanjeev Kumar Yadav, Reema Narayan, Usha Yogendra Nayak, Santosh Kumar Singh and Rajendra Awasthi
Nanoscale Adv., 2024,6, 2469-2486. DOI: 10.1039/D3NA01142A
A new vision of photothermal therapy assisted with gold nanorods for the treatment of mammary cancers in adult female rats
Hend Gamal, Walid Tawfik, Hassan IH El-Sayyad, Ahmed N. Emam, Heba Mohamed Fahmy and Heba A. El-Ghaweet
Nanoscale Adv., 2024,6, 170-187. DOI: 10.1039/D3NA00595J

We hope you enjoy reading this themed collection!

 

Did you know?

At Nanoscale Advances, our themed collections are built by collaboration between our Guest Editors and expert Associate Editors. Our Guest Editors guide the scope and curate the contributions in our collections, but all submissions are handled through peer review by our team of resident Associate Editors. This means that as an author you receive a consistent experience, and as a reader you can trust the quality of the science being presented.

If you have an idea for a topical collection in your research field, we’d love to hear from you! Get in touch here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Celebrating Professor Geoffrey Ozin’s 80th Birthday

Read the cross-journal collection celebrating Professor Ozin’s birthday

We are delighted to introduce our themed collection celebrating the 80th birthday of Professor Geoffrey Ozin!

Guest edited by Professor Wei Sun (Zhejiang University, China), Professor Le He (Soochow University, China), Professor Wendong Wang (Shanghai Jiaotong University, China), Professor Lu Wang (The Chinese University of Hong Kong, Hong Kong), Professor Georg von Freymann (RPTU Kaiserlautern-Landau, Germany) and Professor Bettina Lotsch (Max Planck Institute for Solid State Research, Germany).

This special collection marks the 80th birthday of Professor Geoffrey Ozin, serving as a tribute to his outstanding contributions to materials chemistry and his lasting impact on the scientific community. Widely considered the father of nanochemistry, his work includes pioneering studies of new classes of nanomaterials, mesoporous materials, photonic crystals and nanomachines. This collection aims to reflect the breadth and depth of Professor Ozin’s research interests, inspiring future generations of scientists to continue to push the boundaries of materials chemistry.

A small selection of the papers are featured below, with many more in the collection. All papers are free to access until the end of July, if not already Open Access.

Manganese oxide-based mesoporous thin-film electrodes: manganese disproportionation reaction in alkaline media
Irmak Karakaya Durukan, Işıl Ulu and Ömer Dag
J. Mater. Chem. A, 2024, 12, 6359-6375 DOI: 10.1039/D3TA07973B

Magnetic assembly of plasmonic chiral superstructures with dynamic chiroptical responses
Chaolumen Wu, Qingsong Fan, Zhiwei Li, Zuyang Ye and Yadong Yin
Mater. Horiz., 2024, 11, 680-687, DOI: 10.1039/D3MH01597A

Amine functionalised surface frustrated Lewis pairs boost CO2 photocatalysis
Qinhui Guan, Chengzhe Ni, Tingjiang Yan, Na Li, Lu Wang, Zhe Lu, Weiguang Ran, Yipin Zhang, Wenjuan Li, Lulu Zhang, Dapeng Zhang, Baibiao Huang and Geoffrey A. Ozin
EES. Catal., 2024, 2, 573-584, DOI: 10.1039/D3EY00261F

 

We hope you enjoy reading this themed collection!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection: Fundamental processes in optical nanomaterials

Fundamental processes in optical nanomaterials

Guest edited by Arindam Chowdhury, Alison Funston, Eva Hemmer and Jonathan Veinot

Advanced optical nanomaterials are the building block to innovative technologies that have the potential to address societal challenges from energy to health. Optical nanomaterials offer solutions to more efficient energy harvesting and energy conversion technologies, to enhanced data storage and fast and secure telecommunication, or to more efficient and personalized biomedical approaches, to name just a few examples. To achieve the goal of real-life applications, better understanding of known processes and the discovery of new fundamental phenomena is key. We are delighted to share this special collection in Nanoscale, and ChemComm featuring the latest processes, phenomena, applications, and fundamental science in optical nanomaterials.

You can explore the collection and read the introductory editorial from our guest editors below, with all articles free to access until the end of July 2024.

Read the collection

Fundamental processes in optical nanomaterials collection promotional graphic. Includes photos fo Arindam Chowdhury, Eva Hemmer, Alison Funston and Jonathan Veinot.

Professors Alison Funston, Eva Hemmer, Arindam Chowdhury and Jonathan Veinot served as guest editors for this collection and highlight the vast potential for optical nanomaterials and the significance of their properties and applications in their introductory editorial.

Photos of the guest editors. Left to right: Alison Funston, Eva Hemmer, Arindam Chowdhury and Jonathan Veinot.

Read the introductory editorial

All of the articles in the collection are free to access until the end of July 2024. Read some of the featured articles below.

Graphical abstract image for Plasmonic quenching and enhancement: metal–quantum dot nanohybrids for fluorescence biosensing.Plasmonic quenching and enhancement: metal–quantum dot nanohybrids for fluorescence biosensing
Niko Hildebrandt, Mihye Lim, Namjun Kim, Da Yeon Choi and Jwa-Min Nam
Chem. Commun., 2023, DOI: 10.1039/D2CC06178C 
Graphical abstract images for Progress in the design of portable colorimetric chemical sensing devicesProgress in the design of portable colorimetric chemical sensing devices
Tushar Kant, Kamlesh Shrivas, Ankita Tejwani, Khushali Tandey, Anuradha Sharma and Shashi Gupta
Nanoscale, 2023, DOI: 10.1039/D3NR03803C 
Graphical abstract image for Heat, pH, and salt: synthesis strategies to favor formation of near-infrared emissive DNA-stabilized silver nanoclusters.Heat, pH, and salt: synthesis strategies to favor formation of near-infrared emissive DNA-stabilized silver nanoclusters
Rweetuparna Guha, Malak Rafik, Anna Gonzàlez-Rosell and Stacy M. Copp
Chem. Commun., 2023, DOI: 10.1039/D3CC02896H 
Graphical abstract image for Exploring the intra-4f and the bright white light upconversion emissions of Gd2O3:Yb3+,Er3+-based materials for thermometry.Exploring the intra-4f and the bright white light upconversion emissions of Gd2O3:Yb3+,Er3+-based materials for thermometry
Talita J. S. Ramos, Ricardo L. Longo, Carlos D. S. Brites, Rute A. S. Ferreira, Oscar L. Malta and Luís D. Carlos
Nanoscale, 2023, DOI: 10.1039/D3NR01764H 

Nanoscale is a high-impact international journal, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Our broad scope covers cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology. ChemComm is the Royal Society of Chemistry’s journal for short communications of outstanding significance from across the chemical sciences. The RSC’s most cited journal, ChemComm has been one of the most trusted chemistry journals for over 60 years. Our scope covers all topics in chemistry, and research at the interface of chemistry and other disciplines (such as materials science, nanoscience, physics, engineering and biology) where there is significant novelty in the chemistry aspects. We hope you will consider Nanoscale and ChemComm for your future submissions.

We hope you enjoy reading this collection and look forward to showcasing more work on optical nanomaterials in the future. Please continue to submit your exciting work to Nanoscale and ChemComm.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)