Archive for the ‘Themed Issue’ Category

Open Call for Papers – Reactivity and Self-Assembly in Confined Spaces

Open Call for Papers – Reactivity and Self-Assembly in Confined Spaces

Guest Edited by Xavier Ribas Salamaña, Huan Pang, F. Dean Toste & Raul Hernandez Sanchez.

Nanoscale and Chem Comm are pleased to announce an open call for papers to an upcoming special collection on Reactivity and Self-Assembly in Confined Spaces. This collection is guest edited by Xavier Ribas Salamaña (IQCC, Spain), Huan Pang (Yangzhou University, China), F. Dean Toste (University of California Berkeley, USA) and Raul Hernandez Sanchez (Rice University, USA).

Open call promotional graphic

Reactions at confined sites generally exhibit high rates and exquisite selectivities that differ from those occurring in bulk solution. The confinement spot can be considered as a second coordination sphere of the catalyst, reminiscent of enzymatic active sites.  The orientation of the reagents and substrates is controlled by the special environment around the confined site leading to highly selective transformations. As such, structural constraints and weak interactions conspire to decrease activation barriers of precise reactions to furnish rapid chemo-, regio-, and stereoselective transformations. Therefore, shedding light on reactions taking place at confined spaces is crucial to tame their reactivity and add another level of control to catalyst design.

Reactivity and self-assembly in confined spaces would cover the behavior of chemical species within nanoconfined environments such as colloidal nanoparticle surfaces, polymeric nanosystems, coordination cage cavities, and nanopores within porous materials.

 

Open for submissions until 30 June 2025


How to submit

If you would like to contribute to this themed collection

  1. Log into either the Nanoscale or Chem Comm online submission system.
  2. Submit your article
  3. Select your article type and under the “Themed issues” section in the submission form mention that it is an Open Call contribution to the Reactivity and Self-Assembly in Confined Spaces collection
  4. Add a “Note to the Editor” that this is from the Open Call

The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and inclusion of accepted articles in the final themed issue is not guaranteed. Please note that all submissions will be subject to initial assessment and rigorous peer review to meet the usual high standards of Nanoscale and ChemComm. All articles featured in the collection must be in scope and as such final inclusion is not guaranteed and will be up to the discretion of the guest editors.

We look forward to receiving your latest work and considering it for this collection. Please do get in touch at nanoscale-rsc@rsc.org if you have any questions at all.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Carbon nanomaterials for smart applications

Read the new collection for free in Nanoscale Advances

We are delighted to introduce our new Nanoscale Advances themed collection focusing on Carbon nanomaterials for smart applications!

Guest Edited by Yeye Wen (Beijing Institute of Technology, China), Zhenyuan Xia (Chalmers University of Technology, Sweden) and Muqiang Jian (Beijing Graphene Institute, China)

Carbon nanomaterials with interesting properties have become more easily accessible with rapid research progress in the field, leading to their increasingly widespread use for materials development and applications. This themed collection broadly focuses on carbon nanomaterials for smart applications.

All papers are open access and free to read. A selection of the papers are featured below:

Controlled synthesis, properties, and applications of ultralong carbon nanotubes
Kangkang Wang, Fei Wang, Qinyuan Jiang, Ping Zhu, Khaixien Leu and Rufan Zhang
Nanoscale Adv., 2024, 6, 4504-4521.
DOI: 10.1039/D4NA00437J
Electrowetting on glassy carbon substrates
Sittipong Kaewmorakot, Athanasios A. Papaderakis and Robert A. W. Dryfe
Nanoscale Adv., 2024, 6, 5441-5450.
DOI: 10.1039/D4NA00506F
Advanced lightweight lightning strike protection composites based on super-aligned carbon nanotube films and thermal-resistant zirconia fibers
Mingquan Zhu, Peng Zhang, Feng Gao, Yunxiang Bai, Hui Zhang, Min Zu, Luqi Liu and Zhong Zhang
Nanoscale Adv., 2024, 6, 4858-4864.
DOI: 10.1039/D4NA00392F

 

We hope you enjoy reading this themed collection!

 

Did you know?

At Nanoscale Advances, our themed collections are built by collaboration between our Guest Editors and expert Associate Editors. Our Guest Editors guide the scope and curate the contributions in our collections, but all submissions are handled through peer review by our team of resident Associate Editors. This means that as an author you receive a consistent experience, and as a reader you can trust the quality of the science being presented.

If you have an idea for a topical collection in your research field, we’d love to hear from you! Get in touch here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanocatalysis: A Nanoscale Themed Collection

Nanocatalysis

Guest edited by Dr In Young Kim, Dr Michelle Personick, and Dr Zhiqun Lin.

Nanocatalysis represents an exciting subfield in nanoscience and nanotechnology which involves the use of nanomaterials and subnano-sized materials (nanoclusters, diatoms, single atoms) as catalysts for a wide variety of homogeneous and heterogeneous catalytic applications. Along with significant advances in nanomaterial design and synthesis assisted by machine learning, in-situ/ex-situ characterization techniques, and computational chemistry, the past several decades have witnessed a flood of research activities in this rapidly evolving area with most of the studies focusing on the effects of size, shape, chemical composition and morphology on catalytic properties and performance. This has led to the development of highly effective catalysts with enhanced activity, selectivity, and stability.

This special themed collection aims to provide a platform to showcase the recent progress and challenges in the field of nanocatalysis.

All articles in the collection are free to read until April 2025

Read the collection

A promotional graphic for the nanoscatalysis collection

We invite you to discover the latest research from collection and to read the introductory editorial written by guest editors Dr In Young Kim, Dr Michelle Personick, and Dr Zhiqun Lin.

Read the introductory editorial

All of the articles in the collection are free to access until April 2025. Read some of the featured articles below.

 

Single and dual-atom catalysts towards electrosynthesis of ammonia and urea: a review.

Wenyu Luo, Jiawei Liu, Yue Huc and Qingyu Yan.

Nanoscale, 2024,16, 20463-20483

 

Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts.
Shinya Masuda, Kosuke Sakamotoa and Tatsuya Tsukuda.

Nanoscale, 2024,16, 4514-4528

Consecutive one-pot alkyne semihydrogenation/alkene dioxygenation reactions by Pt(ii)/Cu(ii) single-chain nanoparticles in green solvent.

Jokin Pinacho-Olaciregui,  Ester Verde-Sesto,  Daniel Taton and  José A. Pomposo
Nanoscale
,
2024,16, 9742-9747

Neodymium niobate nanospheres on functionalized carbon nanofibers: a nanoengineering approach for highly sensitive vanillin detection.
I.Jenisha Daisy Priscillal and Sea-Fue Wang.

Nanoscale, 2024,16, 12459-12473

Nanoscale is a high-impact international journal, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Our broad scope covers cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology.

We hope you enjoy reading this collection and look forward to showcasing more work on optical nanomaterials in the future. Please continue to submit your exciting work to Nanoscale.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2025 Chinese New Year Collection

Happy Chinese New Year!

Happy Chinese New Year from everyone on the Nanoscale Horizons, Nanoscale and Nanoscale Advances teams! To celebrate the start of the Year of the Snake, we are delighted to highlight some of the most popular articles published in our nanoscience journals last year by corresponding authors based in countries celebrating the Chinese New Year.

Read the collection now

Chinese new year graphic

All of the articles in these collections are free to access until the end of February 2025. We hope you enjoy reading these popular articles and wish you a happy, healthy and prosperous year of the Snake!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2025 Lunar New Year Collection

Happy Lunar New Year!

Happy Lunar New Year from everyone on the Nanoscale Horizons, Nanoscale and Nanoscale Advances teams! To celebrate the start of the Year of the Snake, we are delighted to highlight some of the most popular articles published in our nanoscience journals last year by corresponding authors based in countries celebrating the Lunar New Year.

Read the collection now

Lunar new year graphic

All of the articles in these collections are free to access until the end of February 2025. We hope you enjoy reading these popular articles and wish you a happy, healthy and prosperous year of the snake!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed Collections in 2024

Looking back at 2024

An overview of the themed collections Nano Journal Family in 2024

Nanoscale Horizons

  • Soft wearable sensors: Guest edited by Wenlong Cheng, John Rogers, Alina Rwei, Dae-Hyeong Kim, and Nanshu Lu
  • Catalysis Collection: Guest edited by Marcella Lusardi, Wee-Jun Ong, Huabin Zhang, Tianyi Ma, Vivek Polshettiwar

Upcoming 2025 Collections

  • Nanoscale Horizons 10th Anniversary collection
  • DNA Nanotechnology
  • NUS 120th Anniversary 

Nanoscale 

Nanoscale Advances:

 Open collections you can get involved with:

Have an idea for a new themed collection in your area? Get in touch here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Supramolecular chirality in self-organised systems and thin films

Read the new collection in Nanoscale Advances

We are delighted to introduce our new themed collection titled Supramolecular chirality in self-organised systems and thin films.

Guest Edited by Ludovico Valli (University of Salento, Italy), Simona Bettini (University of Salento, Italy) and Gabriele Giancane (University of Salento, Italy)

 

A message from Ludovico Valli, Simona Bettini and Gabriele Giancane:

As we continue to explore supramolecular chirality, especially in fields like sensing and materials science, it’s clear that this concept will play a pivotal role in shaping innovations across disciplines..”

 

This themed collection in Nanoscale Advances aims to investigate the fascinating world of chiral self-organisation and its applications in various scientific fields.

 

A small selection of the papers are featured below, all open access and free to read.

Helical interfacial modulation for perovskite photovoltaics
Ghewa AlSabeh, Masaud Almalki, Sitthichok Kasemthaveechok, Marco A. Ruiz-Preciado, Hong Zhang, Nicolas Vanthuyne, Paul Zimmermann, Daphne M. Dekker, Felix Thomas Eickemeyer, Alexander Hinderhofer, Frank Schreiber, Shaik M. Zakeeruddin, Bruno Ehrler, Jeanne Crassous, Jovana V. Milić and Michael Grätzel
Nanoscale Adv., 2024, 6, 3029-3033. DOI: 10.1039/D4NA00027G

Chiral porphyrin-SiO2 nano helices-based sensors for vapor enantiomers recognition
Ilaria Di Filippo, Zakaria Anfar, Gabriele Magna, Piyanan Pranee, Donato Monti, Manuela Stefanelli, Reiko Oda, Corrado Di Natale and Roberto Paolesse
Nanoscale Adv., 2024, 6, 4470-4478. DOI: 10.1039/D4NA00217B

Chiral induction in substrate-supported self-assembled molecular networks under nanoconfinement conditions
Zeno Tessari, Tamara Rinkovec and Steven De Feyter
Nanoscale Adv., 2024, 6, 892-901. DOI: 10.1039/D3NA00894K

 

We hope you enjoy reading this themed collection!

 

Did you know?

At Nanoscale Advances, our themed collections are built by collaboration between our Guest Editors and expert Associate Editors. Our Guest Editors guide the scope and curate the contributions in our collections but all submissions are handled through peer review by our team of resident Associate Editors. This means that as an author you receive a consistent experience, and as a reader you can trust the quality of the science being presented.

If you have an idea for a topical collection in your research field, we’d love to hear from you! Get in touch here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed Collection: Metal Nanoclusters

Metal Nanoclusters

Guest edited by Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das

A promotional graphic for the metal nanoclusters collection, with photos of guest editors Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das

Discover the latest research in this Nanoscale collection. 

Atomically precise metal nanoclusters are novel materials that have the potential to address everyday needs from energy to health. Luminescent metal clusters can be used for effective and efficient energy harvesting and conversion technologies, while water-soluble luminescent metal clusters offer more efficient and personalized biomedical approaches. Furthermore, nanoclusters can be used as building units to form higher-dimensional cluster-assembled materials and can modulate the optoelectronic properties of desired device materials. To create a hierarchy of structures and applications existing collaboration and foster new ones and explore opportunities for students.

This collection in Nanoscale aims to look at new structures, photophysical, chemical and electrochemical catalysis reactions, and structure-property correlations within the themes of atomically precise metal nanoclusters.

We invite you to discover the latest research from metal nanoclusters collection and to read the introductory editorial written by guest editors Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das

All articles in the collection are free to read until the 30th of January 2025.

Read the introductory editorial

Check out some of the featured articles below:

the graphical abstract image depicting a overview on the review on atomic-level design of biomimetic iron–sulfur clusters for biocatalysis

 Electronic state modulation of Ag30 nanoclusters within a ring-shaped polyoxometalate

Sufei Zhou, Di Liu,  Kelong Fan, Haile Liu,  and  Xiao-Dong Zhang

Nanoscale,2024,16, 18644-18665

the graphical abstract image depicting the electronic state modulation of Ag30 nanoclusters within a ring-shaped polyoxometalate

Atomic-level design of biomimetic iron–sulfur clusters for biocatalysis

Daiki Yanai,  Kentaro Yonesato,   Soichi Kikkawa,  Seiji Yamazoe,  Kazuya Yamaguchi  and  Kosuke Suzuki.

Nanoscale, 2024,16, 18383-18388

the graphical abstract image depicting Synergism between copper and silver nanoclusters induces fascinating structural modifications, properties, and applications

Synergism between copper and silver nanoclusters induces fascinating structural modifications, properties, and applications

 Priyanka Sharma, Mainak Ganguly, and Ankita Doib

 Nanoscale, 2024,16, 18666-18683

 

the graphical abstract image depicting ditopic ligand effects on solution structure and redox chemistry in discrete [Cu12S6] clusters with labile Cu–S bonds  

Ditopic ligand effects on solution structure and redox chemistry in discrete [Cu12S6] clusters with labile Cu–S bonds

Michael J. Trenerry and  Gwendolyn A. Bailey

Nanoscale, 2024,16, 16048-16057.

We hope you enjoy reading some of the latest research on metal nanoclusters!

Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Find out more about the journal on our platform and send your submissions now. We look forward to considering your research.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection: Micro- and Nano-Motors

Micro- and Nano-Motors

Guest edited by Martin Pumera, Xing Ma, Samuel Sánchez Ordóñez and Li Zhang ‬‬

Micro/nano-motors (MNMs) are miniaturized devices or structures that can covert other forms of energy harnessed from the surrounding environment into mechanical motion. As an emerging technology with a highly multidisciplinary nature, MNMs involve research efforts from materials science, physics, chemistry, biomedical engineering, etc., and in virtue of their small size and controllable mobility, they have demonstrated revolutionary potential in sensing, biomedicine and environmental applications among others. We are delighted to share this special collection in Nanoscale, and Journal of Materials Chemistry B dedicated to the state of the art of micro- and nanomachines, with emphasis on the design and fabrication, propulsion mechanism, imaging, safety, and application of micro- and nano-motors in a variety of fields.

Professor Martin PumeraProfessor Xing Ma ,  Professor Samuel Sánchez Ordóñez, and Professor Li Zhang served as guest editors for this collection, discussing the virtue of micro and nano motors’ small size and controllable mobility, while highlighting the revolutionary potential applications, in their introductory editorial.

You can explore the collection and read the introductory editorial from our guest editors below, with all articles free to access until the end of December 2024. 

Read the introductory editorial

Check out some of the featured articles:

Graphical abstract: Active therapy based on the byproducts of micro/nanomotorsActive therapy based on the by products of micro/nanomotors

Nanoscale, 2023,15, 953-962, DOI: 10.1039/D2NR05818A

Graphical abstract: Shape-controlled movement of Zn/SU-8 micromotors

Shape-controlled movement of Zn/SU-8 micromotors

Nanoscale Adv., 2024, Advance Article, DOI: 10.1039/D4NA00721B

Graphical abstract: Eliminating waste with waste: transforming spent coffee grounds into microrobots for water treatment

Eliminating waste with waste: transforming spent coffee grounds into microrobots for water treatment

Nanoscale, 2023,15, 17494-17507, DOI:10.1039/D3NR03592A

 

 

Graphical abstract: Light-powered swarming phoretic antimony chalcogenide-based microrobots with “on-the-fly” photodegradation abilitiesLight-powered swarming phoretic antimony chalcogenide-based microrobots with “on-the-fly” photodegradation abilities

Anna Jancik-Prochazkova,

Nanoscale, 2023,15, 5726-5734, DOI:10.1039/D3NR00098B

 

We hope you enjoy reading this collection and look forward to showcasing more work on micro and nano motors in the future. Please continue to submit your exciting work to Nanoscale and Journal of Materials Chemistry B.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Open Call for Papers – Optical Nanomaterials for Biomedical and Environmental applications

Open Call for Papers – Optical Nanomaterials for Biomedical and Environmental Applications

Guest Edited by Yun Suk Huh, Mingdong Dong, Zegao Wang , Marzieh Ramezani Farani, Shuai Zhang and Mohammad Tavakkoli Yaraki.

Nanoscale and Nanoscale Advances are pleased to announce an open call for papers to an upcoming themed collection on optical nanomaterials for biomedical and environmental applications. This collection is guest edited by Professor Yun Suk Huh (Inha University, South Korea),  Professor Mingdong Dong (Aarhus University, Denmark), Professor Zegao Wang (Sichuan University, China), Dr. Marzieh Ramezani Farani (Inha University, South Korea),  Dr.Shuai Zhang (Pacific Northwest National Laboratory, USA),  and Dr. Mohammad Tavakkoli Yaraki (Macquarie University, Australia).

 

To achieve high selectivity and sensitivity in detecting and quantifying analytes, biosensors with a high signal-to-noise ratio are essential. Optical biosensors have gained significant attention over the past decade. Fluorescent and plasmonic nanomaterials are two key types of optical nanomaterials used in various biomedical and environmental applications. Advances in this field are driven by the discovery of new nanomaterials and techniques. These ultrasensitive optical probes are employed for monitoring and detecting pollutants, as well as for in-vitro and in-vivo diagnosis, visualization, and treatment of severe diseases. They are utilized in both colloidal and planar systems, contributing to improved quality of life and a promising future for research.

The current special issue aims to highlight the significance of optical nanomaterials in detecting, quantifying, visualizing, and analyzing biomedical and environmental topics. It will cover a range of materials and techniques, including:

  • Fluorescent nanomaterials (e.g., organic molecules, metal nanoclusters, carbon dots, quantum dots)
  • Plasmonic nanostructures (e.g., metal nanoparticles, planar metal structures)
  • Various biosensing technologies (e.g., fluorescent and colorimetric biosensors, SERS-based probes, SRS microscopy, microfluidic devices, lateral flow assays)
  • Drug delivery
  • Cancer treatment

This call for papers is open for the following article types:

  • Full papers
  • Review Articles

 

Open for submissions until 6 May 2025


How to submit

Articles can be submitted at any time before the deadline via the journal’s online submission system for Nanoscale or Nanoscale Advances. Accepted articles will be published in a citeable format in regular journal issues as soon as possible and collated into the themed collection online. We are looking forward to receiving your submission, which is welcomed any time before the 6 May2025 so that this collection can become available to you and the community as soon as possible.

Please note that Nanoscale is a hybrid (transformative) journal, and articles can be published either via the usual subscription model or open access (article processing charges are required). Nanoscale Advances is gold open access and requires article processing charges. Your institution may have a read & publish deal in place with the RSC which means you may be able to publish open access in our hybrid journals with fees covered by the institution. Check our journal finder to see if you are eligible.

When ready, please submit your article directly to the submission system for Nanoscale or Nanoscale Advances. Please mention that your submission is a contribution to the “Optical Nanomaterials for Biomedical and Environmental Applications collection in the “Themed Issues” section of the submission form and is in response to the Open Call.

Please note that all submissions will be subject to initial assessment and rigorous peer review to meet the usual high standards of Nanoscale or Nanoscale Advances. In some cases, the Associate Editors may offer authors a transfer to Nanoscale Advances from Nanoscale if more appropriate. All articles featured in the collection must be in scope and as such final inclusion is not guaranteed and will be up to the discretion of the guest editors.

We look forward to receiving your latest work and considering it for this collection. Please do get in touch at nanoscale-rsc@rsc.org if you have any questions at all.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)