Author Archive

Call For Papers: Advanced semiconductor nanocrystals

Call For Papers: Advanced semiconductor nanocrystals

Guest edited by Jannika Lauth, Indranath Chakraborty, Klaus Boldt and Angshuman Nag

We are delighted to announce a call for papers for our latest online themed collection in Nanoscale on advanced semiconductor nanocrystals, guest edited by Professors Jannika Lauth (University of Tübingen, Germany), Indranath Chakraborty (IIT Kharagpur, India), Klaus Boldt (University of Rostock, Germany) and Angshuman Nag (IISER Pune, India).

Semiconductor nanocrystals open call for papers promotional graphic. Includes photos of the guest editors Jannika Lauth, Indranath Chakraborty, Klaus Boldt and Angshuman Nag. Open for submissions until 12 November 2024.

Colloidal semiconductor nanocrystals are among the most captivating and influential nanomaterials due to their versatility and wide range of applications. Today, advanced nanocrystals are accessible, with high control over size, shape, and anisotropy, complex structures, exceptional purity, controlled doping, and more. These nanoscale materials exhibit unique optical and electronic properties because of their quantum confinement effects. They are used in light emitters, photodetectors, catalysis, energy harvesting, and components crucial for quantum computing endeavours. With continued research and innovation, these nanomaterials promise to revolutionize various technological fields and address pressing societal challenges. A better grasp of existing processes and uncovering unknown phenomena are crucial for practical applications.

This unique compilation in Nanoscale seeks to explore emerging phenomena in semiconductor nanocrystals. We welcome ground-breaking research that sheds light on fundamental processes in advanced nanocrystals, as well as exciting and future-oriented applications of these materials. Topics of interest include, but are not restricted to:

  • Quantum dots
  • Perovskite nanocrystals
  • 2D semiconductors
  • Fundamental studies in light-matter interactions
  • Luminescent nanocrystals
  • Charge carrier dynamics
  • Nanophotonics
  • Quantum emitters
  • Photodetectors
  • Photovoltaics
  • Photocatalysis
  • Theranostics

This call for papers is open for the following article types:

  • Communications
  • Full papers

Open for submissions until 12 November 2024

If you would like to contribute to this themed collection, you can submit your article directly through the Nanoscale online submission system. Please mention that this submission is an open call contribution to the advanced semiconductor nanocrystals collection in the “Themed issues” section of the submission form and add a “Note to the Editor” that this is from the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and inclusion of accepted articles in the final themed issue is not guaranteed.

Please also note that all submissions will undergo the normal peer review processes including an initial assessment prior to peer review, and that peer review and acceptance are not guaranteed.

If you have any questions about the journal or the collection, then Edward Gardner, the Development Editor for Nanoscale, would be happy to answer them. You can contact him by emailing the journal inbox.

With best wishes,

Professor Jannika Lauth, University of Tübingen, Germany (ORCID: 0000-0002-6054-9615)
Professor Indranath Chakraborty, IIT Kharagpur, India (ORCID: 0000-0003-4195-9384)
Professor Klaus Boldt, University of Rostock, Germany (ORCID: 0000-0002-0035-2490)
Professor Angshuman Nag, IISER Pune, India (ORCID: 0000-0003-2308-334X)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call For Papers: Superwetting nanoelectrodes for renewable energy

Call For Papers: Superwetting nanoelectrodes for renewable energy

Guest edited by Zuankai Wang, Alex Bell, Alberto Vomiero and Xiaoming Sun

We are delighted to announce a call for papers for our latest online themed collection in Nanoscale on Superwetting nanoelectrodes for renewable energy, guest edited by Professors Zuankai Wang (The Hong Kong Polytechnic University, Hong Kong), Alex Bell (University of California, Berkeley, USA), Alberto Vomiero (Luleå University of Technology, Sweden) and Xiaoming Sun (Beijing University of Chemical Technology, China).

Superwetting nanoelectrodes open call for papers promotional graphic. Includes photos of the guest editors Zuankai Wang, Alex Bell, Alberto Vomiero and Xiaoming Sun . Open for submissions until 8 December 2024.

Concerns about global warming from fossil fuels and high oil prices are driving up demand for renewable energy, including wind or solar powers, which currently generates about one-fifth of the electricity used worldwide and is continuously growing. Owing to the intermittent characteristic of distributed renewable energy such as wind power and photovoltaic cell, electricity powered production including hydrogen production, is put forward as the strategy of energy carrier and suppressing the power fluctuations, which lead to the demands for designing better electrode with higher stability and efficiency.

Biomimetic surfaces, which generally show regular micro/nanostructures, offer new insights to address this issue because the intrinsic activity can determine the electrocatalytic behaviours at low overpotentials near the onset, but management on bubbles have a significant influence on the slope under high overpotential where diffusion and mass transfer are more important. Although a series of nanoarray-based structured electrodes have been constructed and demonstrated with excellent performances for gas-involving electrochemical reactions, understanding of bubble wetting behaviour remains elusive. The design of nature-inspired superwetting surface topography for unique functions will spur new thinking and provide paradigm shift in the development of next-generation of new materials and devices, and dramatically extend the boundaries of renewable energy.

This special issue in Nanoscale aims to publish papers focusing on the fundamental understanding and practical applications of superwetting nanoelectrodes, covering broad topics such as:

  • Construction of superwetting electrodes
  • Understanding and controlling three-phase boundaries
  • Mass transfer dynamics during electrocatalysis
  • Bubble/droplet movement on solid surfaces
  • Electrochemical reactions between different phases

This call for papers is open for the following article types:

  • Communications
  • Full papers

Open for submissions until 8 December 2024

If you would like to contribute to this themed collection, you can submit your article directly through the Nanoscale online submission system. Please mention that this submission is an open call contribution to the Superwetting nanoelectrodes for renewable energy collection in the “Themed issues” section of the submission form and add a “Note to the Editor” that this is from the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and inclusion of accepted articles in the final themed issue is not guaranteed.

Please also note that all submissions will undergo the normal peer review processes including an initial assessment prior to peer review, and that peer review and acceptance are not guaranteed.

If you have any questions about the journal or the collection, then Edward Gardner, the Development Editor for Nanoscale, would be happy to answer them. You can contact him by emailing the journal inbox.

With best wishes,

Professor Zuankai Wang, The Hong Kong Polytechnic University, Hong Kong (ORCID: 0000-0002-3510-1122)
Professor Alex Bell, University of California, Berkeley, USA (ORCID: 0000-0002-5738-4645)
Professor Alberto Vomiero, Luleå University of Technology, Sweden (ORCID: 0000-0003-2935-1165)
Professor Xiaoming Sun, Beijing University of Chemical Technology, China (ORCID: 0000-0002-3831-6233)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call For Papers: MXene chemistries in biology, medicine and sensing

Call For Papers: MXene chemistries in biology, medicine and sensing

Guest edited by Yury Gogotsi, Lucia Gemma Delogu, Acelya Yilmazer and Maksym Pogorielov

We are delighted to announce a call for papers for our latest online themed collection in Nanoscale on MXene chemistries in biology, medicine and sensing that is being guest edited by Professors Yury Gogotsi (Drexel University, USA), Lucia Gemma Delogu (University of Padua, Italy and Khalifa University, United Arab Emirates), Acelya Yilmazer (Ankara University, Turkey) and Maksym Pogorielov (Sumy State University, Ukraine and University of Latvia, Latvia).

The submissions deadline has been extended to 30 November 2024

 

Materials play a pivotal role in driving the progress of humanity. From the silicon age, when electronic and computer technologies revolutionized our lives, to the present, where we stand on the cusp of the age of nanomaterials, such as MXenes. MXenes represent a very large class of inorganic materials with an unparalleled diversity of structures and compositions. This sets them apart as one of the most significant recent discoveries in materials science.

These two-dimensional inorganic compounds consist of atomically thin layers of transition metal carbides, nitrides, or carbonitrides. Their versatile chemistry and unique and highly tuneable physicochemical properties have propelled them into myriad applications across various fields, ranging from energy storage to electronics and medicine.

Multiple studies have demonstrated that several MXenes are biocompatible and non-toxic to living organisms, thereby opening a door for various biomedical applications. MXene-based materials offer unique advantages in biosensing, cancer research, and regenerative medicine. The list of medical scenarios is growing every day, from the treatment of cardiovascular diseases to immunology and neuroscience.

This special-themed collection aims to provide a platform to showcase the recent progress and challenges in the field of MXenes chemistries addressing the exciting current challenges in biology, medicine and sensing. The scope of the collection is broad, including but are not limited to:

  • MXene biocompatibility
  • MXenes for sensing (optical sensors, chemical sensors, biosensors, gas sensors, SERS, etc)
  • MXenes in cancer research
  • MXenes in immunology
  • MXenes for drug delivery
  • MXenes as diagnostic tools
  • MXenes in regenerative medicine
  • MXenes in microbiology and virology
  • MXenes in bioelectronics

This call for papers is open for the following article types:

  • Communications
  • Full papers

Open for submissions until 30 November 2024

If you would like to contribute to this themed collection, you can submit your article directly through the Nanoscale online submission system. Please mention that this submission is an open call contribution to the MXene chemistries in biology, medicine and sensing collection in the “Themed issues” section of the submission form and add a “Note to the Editor” that this is from the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and inclusion of accepted articles in the final themed issue is not guaranteed.

Please also note that all submissions will undergo our normal rigorous peer review processes including an initial assessment prior to peer review, and that peer review and acceptance are not guaranteed.

If you have any questions about the journal or the collection, then Edward Gardner, the Development Editor for Nanoscale, would be happy to answer them. You can contact him by emailing the journal inbox.

With best wishes,

Professor Yury Gogotsi, Drexel University, USA (ORCID: 0000-0001-9423-4032)
Professor Lucia Gemma Delogu, University of Padua, Italy and Khalifa University, United Arab Emirates (ORCID: 0000-0002-2329-7260)
Professor Acelya Yilmazer, Ankara University, Turkey (ORCID: 0000-0003-2712-7450)
Professor Maksym Pogorielov, Sumy State University, Ukraine and University of Latvia, Latvia (ORCID: 0000-0001-9372-7791)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Congratulations to the winners of the RSC poster prizes at ISMPC 2024

The 7th International Symposium on Monolayer-Protected Clusters (ISMPC 2024) took place in State College, PA, USA from 12–14 June 2024. Nanoscale Horizons, Nanoscale and Nanoscale Advances were pleased to support best poster awards at this event and we would like to congratulate our winners!

Photos of the poster prizes being awarded at ISMPC. Left photo shows Christine Aikens (left) and Maya Khatun (right). Right photo shows Christine Aikens (left) and Yuto Fukumoto (right).

Photos of the poster prizes being awarded at ISMPC. Left photo shows Christine Aikens (left) and Maya Khatun (right). Right photo shows Christine Aikens (left) and Yuto Fukumoto (right).

 

Learn more about our poster prize awardees below:

Photo of Maya Khatun.

Nanoscale Horizons Poster Prize

Maya Khatun (University of Jyväskylä, Finland)
Poster Title: “Effect of Water on the Electronic Structure and Optical Properties of Inosine Mutant DNA Stabilized Silver Cluster”

Maya Khatun was born in West Bengal, India. She received her bachelor’s (2014) and master’s (2016) degrees in chemistry from Aligarh Muslim University, India. In 2017, she joined the Indian Institute of Technology, Kharagpur, as a PhD student under Dr. Anoop Ayyappan. Her PhD research focuses on implementing a cluster-building algorithm using random search and the Tabu-Search algorithm to optimize atomic clusters, specifically studying nanoclusters of Pd, Au, and Pt. She also assesses various DFT and ab initio methods to identify efficient approaches for studying boron group clusters and gold thiolates. In 2023, she joined the Department of Physics at Jyväskylä University, Finland, as a postdoctoral researcher under Prof. Hannu Häkkinen. Her current research focuses on NIR-emitting, biocompatible nanosystems like DNA-wrapped silver clusters, emphasizing their electronic structure and physical properties for biomedical applications.

 

 

Photo of Yuto Fukumoto.

Nanoscale and Nanoscale Advances Poster Prize

Yuto Fukumoto (The University of Tokyo, Japan)
Poster Title: “Synthesis of diphosphine-protected IrAu12 cluster with open site(s) and linkage by diisocyanide linker”

Yuto Fukumoto received his B.S. degree from the University of Tokyo in 2023 and is currently a master’s student at the University of Tokyo under the supervision of Professor Tatsuya Tsukuda. He is interested in the synthesis of well-defined assemblies of metal clusters and the exploration of novel properties arising from these assemblies. He is currently developing a targeted synthesis of ligand-bridged assemblies of gold clusters with predefined open sites for bridging.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection: Fundamental processes in optical nanomaterials

Fundamental processes in optical nanomaterials

Guest edited by Arindam Chowdhury, Alison Funston, Eva Hemmer and Jonathan Veinot

Advanced optical nanomaterials are the building block to innovative technologies that have the potential to address societal challenges from energy to health. Optical nanomaterials offer solutions to more efficient energy harvesting and energy conversion technologies, to enhanced data storage and fast and secure telecommunication, or to more efficient and personalized biomedical approaches, to name just a few examples. To achieve the goal of real-life applications, better understanding of known processes and the discovery of new fundamental phenomena is key. We are delighted to share this special collection in Nanoscale, and ChemComm featuring the latest processes, phenomena, applications, and fundamental science in optical nanomaterials.

You can explore the collection and read the introductory editorial from our guest editors below, with all articles free to access until the end of July 2024.

Read the collection

Fundamental processes in optical nanomaterials collection promotional graphic. Includes photos fo Arindam Chowdhury, Eva Hemmer, Alison Funston and Jonathan Veinot.

Professors Alison Funston, Eva Hemmer, Arindam Chowdhury and Jonathan Veinot served as guest editors for this collection and highlight the vast potential for optical nanomaterials and the significance of their properties and applications in their introductory editorial.

Photos of the guest editors. Left to right: Alison Funston, Eva Hemmer, Arindam Chowdhury and Jonathan Veinot.

Read the introductory editorial

All of the articles in the collection are free to access until the end of July 2024. Read some of the featured articles below.

Graphical abstract image for Plasmonic quenching and enhancement: metal–quantum dot nanohybrids for fluorescence biosensing.Plasmonic quenching and enhancement: metal–quantum dot nanohybrids for fluorescence biosensing
Niko Hildebrandt, Mihye Lim, Namjun Kim, Da Yeon Choi and Jwa-Min Nam
Chem. Commun., 2023, DOI: 10.1039/D2CC06178C 
Graphical abstract images for Progress in the design of portable colorimetric chemical sensing devicesProgress in the design of portable colorimetric chemical sensing devices
Tushar Kant, Kamlesh Shrivas, Ankita Tejwani, Khushali Tandey, Anuradha Sharma and Shashi Gupta
Nanoscale, 2023, DOI: 10.1039/D3NR03803C 
Graphical abstract image for Heat, pH, and salt: synthesis strategies to favor formation of near-infrared emissive DNA-stabilized silver nanoclusters.Heat, pH, and salt: synthesis strategies to favor formation of near-infrared emissive DNA-stabilized silver nanoclusters
Rweetuparna Guha, Malak Rafik, Anna Gonzàlez-Rosell and Stacy M. Copp
Chem. Commun., 2023, DOI: 10.1039/D3CC02896H 
Graphical abstract image for Exploring the intra-4f and the bright white light upconversion emissions of Gd2O3:Yb3+,Er3+-based materials for thermometry.Exploring the intra-4f and the bright white light upconversion emissions of Gd2O3:Yb3+,Er3+-based materials for thermometry
Talita J. S. Ramos, Ricardo L. Longo, Carlos D. S. Brites, Rute A. S. Ferreira, Oscar L. Malta and Luís D. Carlos
Nanoscale, 2023, DOI: 10.1039/D3NR01764H 

Nanoscale is a high-impact international journal, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Our broad scope covers cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology. ChemComm is the Royal Society of Chemistry’s journal for short communications of outstanding significance from across the chemical sciences. The RSC’s most cited journal, ChemComm has been one of the most trusted chemistry journals for over 60 years. Our scope covers all topics in chemistry, and research at the interface of chemistry and other disciplines (such as materials science, nanoscience, physics, engineering and biology) where there is significant novelty in the chemistry aspects. We hope you will consider Nanoscale and ChemComm for your future submissions.

We hope you enjoy reading this collection and look forward to showcasing more work on optical nanomaterials in the future. Please continue to submit your exciting work to Nanoscale and ChemComm.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Celebrating the 150th anniversary of Vanderbilt University

Celebrating the 150th anniversary of Vanderbilt University

Guest edited by De-en Jiang, Janet E. Macdonald and Sharon M. Weiss

Piran R. Kidambi et al’s cover for their article on ultra-thin proton conducting carrier layers for scalable integration of atomically thin 2D materials with proton exchange polymers for next-generation PEMs.

We were delighted to celebrate the 150th anniversary of Vanderbilt University at the end of last year and into the start of 2024 with a special collection in Nanoscale Horizons, Nanoscale and Nanoscale Advances highlighting the breadth of high-quality work from the institute and commemorating the university’s sesquicentennial. We’re pleased to share this excellent collection of research and reviews with you, providing a snapshot of the nanoscale science and engineering research from Vanderbilt faculty, alumni, and collaborators in 2023 and 2024.

We’re also delighted to showcase the work of Piran R. Kidambi et al, which featured on the cover of Nanoscale!

You can explore the collection and read the introductory editorial from our guest editors below, with all articles free to access until the end of August 2024.

Read the collection

Professors De-en Jiang, Janet Macdonald and Sharon Weiss served as guest editors for this collection and highlight the history of Vanderbilt University and the significance of the Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) in their introductory editorial.

Photos of De-en Jiang, Janet Macdonald and Sharon Weiss.

Read the introductory editorial

All of the articles in the collection are free to access until the end of August 2024. Read some of the featured articles below.

Graphical abstract image for ‘Phonon vortices at heavy impurities in two-dimensional materials’.

Phonon vortices at heavy impurities in two-dimensional materials
De-Liang Bao, Mingquan Xu, Ao-Wen Li, Gang Su, Wu Zhou and Sokrates T. Pantelides
Nanoscale Horiz., 2024, DOI: 10.1039/D3NH00433C

 

Graphical abstract image for ‘Role of carboxylates in the phase determination of metal sulfide nanoparticles’.

Role of carboxylates in the phase determination of metal sulfide nanoparticles
Andrey A. Shults, Guanyu Lu, Joshua D. Caldwell and Janet E. Macdonald
Nanoscale Horiz., 2023, DOI: 10.1039/D3NH00227F

 

Graphical abstract image for ‘Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing’.

Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
Hayden M. Pagendarm, Payton T. Stone, Blaise R. Kimmel, Jessalyn J. Baljon, Mina H. Aziz, Lucinda E. Pastora, Lauren Hubert, Eric W. Roth, Sultan Almunif, Evan A. Scott and John T. Wilson
Nanoscale, 2023, DOI: 10.1039/D3NR02874G

 

Graphical abstract image for ‘Hyperspectral mapping of nanoscale photophysics and degradation processes in hybrid perovskite at the single grain level’.

Hyperspectral mapping of nanoscale photophysics and degradation processes in hybrid perovskite at the single grain level
Ethan J. Taylor, Vasudevan Iyer, Bibek S. Dhami, Clay Klein, Benjamin J. Lawrie and Kannatassen Appavoo
Nanoscale Adv., 2023, DOI: 10.1039/D3NA00529A

 

Nanoscale Horizons and Nanoscale are high-impact international journals, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Nanoscale Advances is our gold open access member of the nanoscale journal family. Our broad scope covers cross-community research that bridges various disciplines, and the journal series allows full coverage of interdisciplinary advances in nanoscience and nanotechnology. We hope you will consider Nanoscale Horizons, Nanoscale and Nanoscale Advances for your future submissions.

We hope you enjoy reading this collection and look forward to showcasing more work from Vanderbilt faculty and alumni in the future. Please continue to submit your exciting work to Nanoscale Horizons, Nanoscale and Nanoscale Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Celebrating the 20th anniversary of NCNST

Celebrating the 20th anniversary of NCNST

Guest edited by Xinfeng Liu, Qing Dai, Zhixiang Wei, Chunying Chen and Yuliang Zhao

 

Cover for NCNST anniversary collection featuring some of the previous Nanoscale Horizons and Nanoscale covers from NCNST researchers over the last 20 years.

 

Last year we were delighted to celebrate the 20th anniversary of the National Center for Nanoscience and Technology (NCNST) with a special collection in Nanoscale Horizons, Nanoscale and Nanoscale Advances highlighting the breadth of high-quality work from the institute. We’re pleased to share this collection of research and reviews covering the most recent research progress in a wide spectrum of nanoscience and nanotechnology from researchers currently affiliated with NCNST as well as esteemed alumni.

You can explore the collection and read the introductory editorial from our guest editors below, with all articles free to access until the end of April 2024.

Read the collection

Professor Xinfeng Liu, Professor Qing Dai, Professor Zhixiang Wei, Professor Chunying Chen and Professor Yuliang Zhao served as guest editors for this collection and highlight the history of NCNST and significance of this anniversary in their introductory editorial.

Photos of Xinfeng Liu, Qing Dai, Zhixiang Wei, Chunying Chen and Yuliang Zhao.

 

Read the introductory editorial

All of the articles in the collection are free to access until the end of April 2024. Read some of the featured articles below.

Reviews

Graphical abstract image for Material design, development, and trend for surface-enhanced Raman scattering substrates.

Material design, development, and trend for surface-enhanced Raman scattering substrates
Yue Ying, Zhiyong Tang and Yaling Liu
Nanoscale, 2023, DOI: 10.1039/D3NR01456H

 

Graphical abstract image for RNA-cleaving DNAzymes for accurate biosensing and gene therapy.

RNA-cleaving DNAzymes for accurate biosensing and gene therapy
Xin Gao, Yixin Liu, Wendi Huo, Yuwei Song, Yu Chen, Jinchao Zhang, Xinjian Yang, Yi Jin and Xing-jie Liang
Nanoscale, 2023, DOI: 10.1039/D3NR01482G

 

Research articles

Graphical abstract image for Scalable engineering of hierarchical layered micro-sized silicon/graphene hybrids via direct foaming for lithium storage.

Scalable engineering of hierarchical layered micro-sized silicon/graphene hybrids via direct foaming for lithium storage
Mathar Hamza, Siyuan Zhang, Wenqiang Xu, Denghui Wang, Yingjie Ma and Xianglong Li
Nanoscale, 2023, DOI: 10.1039/D3NR02840B

 

Graphical abstract image for A wearable AuNP enhanced metal–organic gel (Au@MOG) sensor for sweat glucose detection with ultrahigh sensitivity.

A wearable AuNP enhanced metal–organic gel (Au@MOG) sensor for sweat glucose detection with ultrahigh sensitivity
Dengfeng Zhou, Shuangbin Zhang, Atta Ullah Khan, Lan Chen and Guanglu Ge
Nanoscale, 2024, DOI: 10.1039/D3NR05179J

 

Graphical abstract image for Cascade energy transfer boosted near-infrared circularly polarized luminescence of nanofibers from an exclusively achiral system.

Cascade energy transfer boosted near-infrared circularly polarized luminescence of nanofibers from an exclusively achiral system
Chen Xiao, Chengxi Li, Kang Huang, Pengfei Duan and Yafei Wang
Nanoscale, 2023, DOI: 10.1039/D3NR01515G

 

Nanoscale Horizons and Nanoscale are high-impact international journals, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Nanoscale Advances is our gold open access member of the nanoscale journal family. Our broad scope covers cross-community research that bridges various disciplines, and the journal series allows full coverage of interdisciplinary advances in nanoscience and nanotechnology. We hope you will consider Nanoscale Horizons, Nanoscale and Nanoscale Advances for your future submissions.

We hope you enjoy reading this collection and look forward to showcasing more work from NCNST in the future. Please continue to submit your exciting work to Nanoscale Horizons, Nanoscale and Nanoscale Advances.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Celebrating 25 years of the Key Laboratory for Special Functional Materials at Henan University

Celebrating 25 years of the Key Laboratory for Special Functional Materials at Henan University

Guest edited by Feng Bai, Gang Cheng, Zuliang Du and Guohua Jia

Last year we were delighted to celebrate the 25th anniversary of the Key Laboratory for Special Functional Materials of Ministry of Education at Henan University with a special collection in Nanoscale highlighting the breadth of high-quality work from the institute. We’re pleased to share this collection of research and reviews covering the most recent research progress in a wide spectrum of nanoscience and nanotechnology from researchers currently affiliated with the Key Lab as well as esteemed alumni.

You can explore the collection and read the introductory editorial from our guest editors below, with all articles free to access until the end of April 2024.

Read the collection

Photos of Feng Bai, Gang Cheng, Zuliang Du and Guohua Jia.

Professor Feng Bai, Professor Gang Cheng, Professor Zuliang Du and Professor Guohua Jia served as guest editors for this collection and highlight the history of the Key Laboratory for Special Functional Materials of Ministry of Education and significance of this anniversary in their introductory editorial.

Read the introductory editorial

All of the articles in the collection are free to access until the end of April 2024. Read some of the featured articles below.

Reviews

Graphical abstract image for Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: recent progress and perspectives.

Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: recent progress and perspectives
Chen Qiao, Yingying Hao, Chuanbao Cao and JiaTao Zhang
Nanoscale, 2023, DOI: 10.1039/D2NR05783B

 

Graphical abstract image for Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis.

Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis
Xiaofei Chen, Hongzhuo Wu, Xinjian Shi and Lixin Wu
Nanoscale, 2023, DOI: 10.1039/D3NR01176C

 

Research articles

Graphical abstract image for Selection of an aggregation-caused quenching-based fluorescent tracer for imaging studies in nano drug delivery systems.

Selection of an aggregation-caused quenching-based fluorescent tracer for imaging studies in nano drug delivery systems
Xin Ji, Yifan Cai, Xiaochun Dong, Wei Wu and Weili Zhao
Nanoscale, 2023, DOI: 10.1039/D3NR01018J

 

Graphical abstract image for A layer-stacked NiO nanowire/nanosheet homostructure for electrochromic smart windows with ultra-large optical modulation.

A layer-stacked NiO nanowire/nanosheet homostructure for electrochromic smart windows with ultra-large optical modulation
Yi Gao, Pengyang Lei, Siyu Zhang, Huanhuan Liu, Chengyu Hu, Zhu Kou, Jinhui Wang and Guofa Cai
Nanoscale, 2023, DOI: 10.1039/D3NR01211E

 

Nanoscale is a high-impact international journal, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Our broad scope covers cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology. We are always interested in considering high-quality articles and we would be delighted if you would consider the journal for your next submission, which can be made via our online submission service. All submissions will be subject to initial assessment and peer review as appropriate according to the journal’s guidelines.

We hope you enjoy reading this collection and look forward to showcasing more work from the institute in the future. Please continue to submit your exciting work to Nanoscale.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call For Papers: Metal nanoclusters

Call For Papers: Metal nanoclusters

Guest edited by Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das

We are delighted to announce a call for papers for our latest online themed collection in Nanoscale on metal nanoclusters that is being guest edited by Professor Sukhendu Mandal (IISER Thiruvananthapuram, India), Professor Yuichi Negishi (Tokyo University of Science, Japan), Professor Di Sun (Shandong University, China) and Professor Anindita Das (South Methodist University, USA).

Metal nanoclusters open call for papers promotional graphic. Includes photos of the guest editors Sukhendu Mandal, Yuichi Negishi, Di Sun and Anindita Das. Open for submissions until 1 July 2024.

Atomically precise metal nanoclusters are novel materials that have the potential to address everyday needs from energy to health. Luminescent metal clusters can be used for effective and efficient energy harvesting and conversion technologies, while water-soluble luminescent metal clusters offer more efficient and personalized biomedical approaches. Furthermore, nanoclusters can be used as building units to form higher-dimensional cluster-assembled materials and can modulate the optoelectronic properties of desired device materials. To create a hierarchy of structures and applications, a fundamental understanding of the structure-property relationship at the atomic level is vital.

This special collection aims to look at new structures, photophysical, chemical and electrochemical catalysis reactions, and structure-property correlations within the themes of atomically precise metal nanoclusters. We wish to highlight research communicating novel structures, properties and phenomena, where applications for societal needs are appreciated as well as reports of new and exciting basic science. Prospective topics include but are not limited to:

  • New nanocluster structures
  • Transformation reactions
  • Luminescent materials
  • Light-matter interactions
  • Catalysis
  • Electrocatalysis
  • Bio-imaging and sensing
  • Drug delivery
  • Optoelectronic devices
  • New techniques for characterization

This call for papers is open for the following article types:

  • Communications
  • Full papers

Open for submissions until 1 July 2024

If you would like to contribute to this themed collection, you can submit your article directly through the Nanoscale online submission system. Please mention that this submission is an open call contribution to the metal nanoclusters collection in the “Themed issues” section of the submission form and add a “Note to the Editor” that this is from the Open Call. The Editorial Office reserves the right to check suitability of submissions in relation to the scope of both the journal and the collection, and inclusion of accepted articles in the final themed issue is not guaranteed.

Please also note that all submissions will undergo our normal rigorous peer review processes including an initial assessment prior to peer review, and that peer review and acceptance are not guaranteed.

If you have any questions about the journal or the collection, then Edward Gardner, the Development Editor for Nanoscale, would be happy to answer them. You can contact him by emailing the journal inbox.

With best wishes,

Professor Sukhendu Mandal, IISER Thiruvananthapuram, India (ORCID: 0000-0002-4725-8418)
Professor Yuichi Negishi, Tokyo University of Science, Japan (ORCID: 0000-0003-3965-1399)
Professor Di Sun, Shandong University, China (ORCID: 0000-0001-5966-1207)
Professor Anindita Das, South Methodist University, USA (ORCID: 0000-0002-8855-8265)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Professor Nguyen TK Thanh joins the Associate Editor team

Professor Nguyen TK Thanh joins the Associate Editor team

Welcome to Nanoscale and Nanoscale Advances!

 

Photo of Nguyen TK Thanh.

We are delighted to welcome Professor Nguyen TK Thanh, University College London, UK, as a new Associate Editor working across Nanoscale and Nanoscale Advances.

Professor Nguyễn Thị Kim Thanh held a prestigious Royal Society University Research Fellowship (2005-2014). She was appointed a Full Professor in Nanomaterials in 2013 at University College London where she leads a dynamic group conducting cutting edge interdisciplinary and innovative research on the design, and synthesis of magnetic and plasmonic nanomaterials for biomedical applications.

In 2019, she was honoured for her achievements in the field of nanomaterials and was awarded Royal Society Rosalind Franklin Medal. She was the RSC Interdisciplinary Prize winner in 2022 and was also awarded the SCI/RSC Colloids Groups 2023 Graham Prize Lectureship. She is one of only 12 recipients globally of the IUPAC 2023 Distinguished Women in Chemistry/Chemical Engineering Awards.

“I am really looking forward to joining the editorial board of Nanoscale and Nanoscale Advances as it will compliment my role as Editor-in-chief of the RSC Nanoscience and Nanotechnology book series. We published our first paper in Nanoscale in 2010 and I have been working closely with the journal as a guest editor three times. It is a great chance to promote research in nanoscale science and technology, which will have many tremendous applications and tackling many challenges in our society such as improving quality of life on earth and sustaining its climate.” – Professor Nguyen TK Thanh

We welcome you to submit your latest work on magnetic, plasmonic and colloidal nanomaterials for biomedical applications to her editorial office for consideration.

Submit your latest research

Explore some of Professor Thanh’s recent articles below.

Graphical abstract for Development of a thermochromic lateral flow assay to improve sensitivity for dengue virus serotype 2 NS1 detection.

Development of a thermochromic lateral flow assay to improve sensitivity for dengue virus serotype 2 NS1 detection
Thithawat Trakoolwilaiwan, Yasuhiro Takeuchi, Terence S. Leung, Matej Sebek, Liudmyla Storozhuk, Linh Nguyen, Le Duc Tung and Nguyen Thi Kim Thanh*
Nanoscale, 2023, DOI: 10.1039/D3NR01858J

 

Graphical abstract for Enhanced detoxification of Cr6+ by Shewanella oneidensis via adsorption on spherical and flower-like manganese ferrite nanostructures.

Enhanced detoxification of Cr6+ by Shewanella oneidensis via adsorption on spherical and flower-like manganese ferrite nanostructures
Diana S. Raie, Ioannis Tsonas, Melisa Canales, Stefanos Mourdikoudis, Konstantinos Simeonidis, Antonios Makridis, Dimitrios Karfaridis, Shanom Ali, Georgios Vourlias, Peter Wilson, Laurent Bozec, Lena Ciric and Nguyen Thi Kim Thanh*
Nanoscale Adv., 2023, DOI: 10.1039/D2NA00691J

 

Graphical abstract for Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.

Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality
Stanley Harvell-Smith, Le Duc Tung and Nguyen Thi Kim Thanh*
Nanoscale, 2022, DOI: 10.1039/D1NR05670K

 

Nanoscale and Nanoscale Advances are high-impact international journals, publishing high-quality experimental and theoretical work across the breadth of nanoscience and nanotechnology. Our broad scope covers cross-community research that bridges the various disciplines involved with nanoscience and nanotechnology.

Please join us in welcoming Professor Thanh to Nanoscale and Nanoscale Advances and we hope you will consider Nanoscale and Nanoscale Advances for your future submissions.

Best wishes,

Dr Heather Montgomery
Managing Editor, Nanoscale
Dr Jeremy Allen
Executive Editor, Nanoscale Advances
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)