Archive for March, 2022

Themed collection: Flexible Nanomaterials

We are delighted to invite you to read a new themed collection on Flexible Nanomaterials: Microscopic Mechanisms and Macroscopic Applications

 

Read the collection

 

Guest edited by Yuan Cheng (Monash University, Australia), Zibiao Li (A*STAR, Singapore), Junfeng Gao (Dalian University of Technology, China), Hai-Dong Yu (Northwestern Polytechnical University, China) and Gang Zhang (A*STAR, Singapore). This themed collection is focussed on the fundamental physical and chemical properties of flexible materials, as well as controlled functionalization, in order to harness the materials’ fundamental properties and enhanced performance in applications in the fields of flexible electronics, rechargeable batteries, thermoelectrics, optoelectronics, and soft robotics.

 

Articles in the collection are published in Nanoscale Advances and are freely available with gold open access. Read the Editorial article that introduces the collection:

Introduction to flexible nanomaterials: microscopic mechanisms and macroscopic applications

 

We hope you enjoy reading this collection. If you work on flexible nanomaterials and want to know more about publishing your next piece of work with Nanoscale Advances, please get in touch.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Photoinduced Charge Transfer in a Bi2O2Se/CsPbBr3 Heterostructure

Photoinduced Charge Transfer in a Bi2O2Se/CsPbBr3 Heterostructure

An infographic highlighting photodetectors exploiting interfacial charge transfer in nanocrystal heterostructures

We would like to share an infographic highlighting the excellent work by P. K. Giri et al. on understanding the efficient charge transfer in few-layer Bi2O2Se/CsPbBr3 nanocrystal heterostructures! Check out the infographic below to learn more or get the full story from their Nanoscale article.

Understanding the interfacial charge transfer in the CVD grown Bi2O2Se/CsPbBr3 nanocrystal heterostructure and its exploitation in superior photodetection: experiment vs. theory
Md Tarik Hossain, Mandira Das, Joydip Ghosh, Subhradip Ghosh and P. K. Giri
Nanoscale, 2021, DOI: 10.1039/D1NR04470B

An infographic summarising the content of the article “Understanding the interfacial charge transfer in the CVD grown Bi2O2Se/CsPbBr3 nanocrystal heterostructure and its exploitation in superior photodetection: experiment vs. theory"

Meet the authors

Md Tarik Hossain Md Tarik Hossain

Md Tarik Hossain is presently a PhD research scholar at the department of Physics, Indian Institute of Technology Guwahati, Assam. He obtained his Master degree in Physics from University of Hyderabad and joined the PhD programme at Indian Institute of Technology Guwahati in 2018. His research interests are CVD growth and multifunctional applications of non-van der Walls 2D materials, including photophysics and optoelectronics.

Professor Pravat Giri Pravat K. Giri

Prof. P. K. Giri earned his PhD in Physics from Indian Institute of Technology (IIT) Kanpur in 1998 followed by postdoctoral research in CNR IMM, Italy. In 1999, he joined IGCAR, Kalpakkam as a Scientist and later (2001) he moved to IIT Guwahati as a Faculty member in Physics. Presently he is a full Professor of Physics and Nanotechnology at IIT Guwahati. For his outstanding research contributions, he received several awards/ fellowships including ICTP TRIL fellowship (1998), DAE Young Scientist Award (2000), DAAD Exchange visit Fellowship (2010), JSPS Invitation Fellowship for log-term research in Japan (2012), Visiting research fellowship, University of Birmingham, UK (2018), MRSI medal (2020). He is a fellow of Institute of Physics, UK. He has published more 160 journal articles including 8 review articles in high profile international journals and holds one patent to his credit. Currently, his H-index is 41. He is one among the world’s top 2% scientists in Applied Physics and Nanoscience area (database published by Stanford University, USA). His research areas of interests are semiconductor nanostructures, 2D materials, nanobiosensors, optoelectronics, nanophotonics etc.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Most Popular 2021 Nanoscale Articles

Most popular articles in 2021

 

We wanted to share with you some of the most popular articles published in Nanoscale last year, determined by their citations and page views.

Read the most popular Nanoscale articles here

All of the articles in the collection are free to access until the end of March 2022. Read some of the featured articles below.

Revisiting anodic alumina templates: from fabrication to applications
Alejandra Ruiz-Clavijo, Olga Caballero-Calero and Marisol Martín-González
Nanoscale, 2021, DOI: 10.1039/D0NR07582E

2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications
Yanpeng Xue, Gongchi Zhao, Ruiying Yang, Feng Chu, Juan Chen, Lei Wang and Xiubing Huang
Nanoscale, 2021, DOI: 10.1039/D0NR09064F

Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages
Martin T. Matter, Meagan Doppegieter, Alexander Gogos, Kerda Keevend, Qun Ren and Inge K. Herrmann
Nanoscale, 2021, DOI: 10.1039/D0NR08285F

Efficient single-photon pair generation by spontaneous parametric down-conversion in nonlinear plasmonic metasurfaces
Boyuan Jin, Dhananjay Mishra and Christos Argyropoulos
Nanoscale, 2021, DOI: 10.1039/D1NR05379E

Group-IV(A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity
Pradip Nandi, Ashima Rawat, Raihan Ahammed, Nityasagar Jena and Abir De Sarkar
Nanoscale, 2021, DOI: 10.1039/D0NR07027K

 

We hope you enjoy reading these popular articles.

With best wishes,

Dr Heather Montgomery
Managing Editor, Nanoscale

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Generation of Chiroptically Active CsPbBr3 Nanoparticles

Generation of Chiroptically Active CsPbBr3 Nanoparticles

An infographic highlighting the post-synthetic ligand modification of perovskites to generate chiral nanoparticles

We would like to share an infographic highlighting the excellent work by David H. Waldeck et al. on a facile post-synthetic ligand modification strategy for making CsPbBr3 nanoparticles from achiral counterparts at room temperature! Check out the infographic below to learn more or get the full story from their Nanoscale article.

Using post-synthetic ligand modification to imprint chirality onto the electronic states of cesium lead bromide (CsPbBr3) perovskite nanoparticles
Gouranga H. Debnath, Zheni N. Georgieva, Brian P. Bloom, Susheng Tan and David H. Waldeck
Nanoscale, 2021, DOI: 10.1039/D1NR04274B

An infographic summarising the content of the article “Using post-synthetic ligand modification to imprint chirality onto the electronic states of cesium lead bromide (CsPbBr3) perovskite nanoparticles"

Meet the authors

Dr Gouranga Debnat Gouranga H. Debnat

Gouranga H. Debnath received his Ph.D. in Nanoscience and Nanotechnology from the Centre for Research in Nanoscience and Nanotechnology (CRNN) University of Calcutta in 2020, where he worked on the synthesis and spectroscopic characterization of lanthanide doped semiconductor nanomaterials. He is currently a postdoctoral associate in Prof. David H. Waldeck’s group at the Department of Chemistry University of Pittsburgh, where he studies perovskite nanomaterials and the chiral induced spin selectivity (CISS) effect.

Professor David Waldeck David H. Waldeck

David H. Waldeck obtained a Ph.D. in chemistry from the University of Chicago in 1983 and was an IBM Postdoctoral Fellow at the University of California, Berkeley from 1983 to 1985. In 1985 he began his independent career as an Assistant Professor of Chemistry at the University of Pittsburgh, where he now serves as Professor of Chemistry and Director of the Petersen Institute of NanoScience and Engineering. David’s research program uses methods of spectroscopy, electrochemistry, and microscopy to investigate primary processes in the condensed phase and in nanoscale assemblies. His research program uses experiment and theory in a synergistic manner to quantify the interesting phenomenology that is displayed by molecules and their assemblies. Currently they are working to elucidate the nature of long-range electron transfer and the chiral induced spin selectivity effect.

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)