Archive for the ‘Uncategorized’ Category

Some of the most popular 2017 articles in Materials Horizons

We are delighted to share with you some of the most popular articles that were published in Materials Horizons in 2017.

Last year our Materials Horizons community published a larger number of articles of exceptional significance than ever before. We hope you enjoy reading this selection of some of the most highly cited* and most frequently downloaded articles from 2017.


Focus

Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions
Qilu Zhang, Christine Weber, Ulrich S. Schubert and Richard Hoogenboom

Review

Metal organic framework based catalysts for CO2 conversion
James W. Maina, Cristina Pozo-Gonzalo, Lingxue Kong, Jürg Schütz, Matthew Hill and Ludovic F. Dumée

Heteroatom-doped graphene as electrocatalysts for air cathodes
Huijuan Cui, Zhen Zhou and Dianzeng Jia

Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology
Xiangbo Meng, Xinwei Wang, Dongsheng Geng, Cagla Ozgit-Akgun, Nathanaelle Schneider and Jeffrey W. Elam

Metal-organic frameworks: a novel host platform for enzymatic catalysis and detection
Effrosyni Gkaniatsou, Clémence Sicard, Rémy Ricoux, Jean-Pierre Mahy, Nathalie Steunou and Christian Serre

Communication

Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality
Zewen Xiao, Weiwei Meng, Jianbo Wang, David B. Mitzi and Yanfa Yan

Quaternisation-polymerized N-type polyelectrolytes: synthesis, characterisation and application in high-performance polymer solar cells
Zhicheng Hu, Rongguo Xu, Sheng Dong, Kai Lin, Jinju Liu, Fei Huang and Yong Cao

Functional conductive nanomaterials via polymerisation in nano-channels: PEDOT in a MOF
Tiesheng Wang, Meisam Farajollahi, Sebastian Henke, Tongtong Zhu, Sneha R. Bajpe, Shijing Sun, Jonathan S. Barnard, June Sang Lee, John D. W. Madden, Anthony K. Cheetham and Stoyan K. Smoukov

Efficient triplet–triplet annihilation upconversion in binary crystalline solids fabricated via solution casting and operated in air
Kenji Kamada, Yusuke Sakagami, Toshiko Mizokuro, Yutaka Fujiwara, Kenji Kobayashi, Kaishi Narushima, Shuzo Hirata and Martin Vacha

Programming 2D/3D shape-shifting with hobbyist 3D printers
Teunis van Manen, Shahram Janbaz and Amir A. Zadpoor


 

Check out our most recent articles from 2018…

 

At Materials Horizons, our reviewing standards are set extremely high to ensure we only publish first reports of new concepts across the breadth of materials research. Our impact factor of 10.706** is testament to the exceptionally significant work of our community.

Contact us: materialshorizons-rsc@rsc.org

Follow us: Homepage | Twitter | Facebook | Blog | E-alerts | RSS

 

 

*Web of Science (February 2018) © Clarivate Analytics.
**2016 Journal Citation Reports (June 2017) © Clarivate Analytics.

 

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A simple gradient makes biomimetic surfaces extremely durable

A new and highly controllable technique to manufacture functional gradient nanocomposites has been reported in a recent article, published in Materials Horizons. The technique enables smooth and programmable stiff-to-compliant (or compliant-to-stiff) transitions within micro-scale regions.

This technique, developed by Dr. Zhengzhi Wang and colleagues at Wuhan University, is based on a typical two-step process:

  1. Use a magnetic field to generate a desired concentration gradient of magnetic-responsive nano-reinforcements inside a polymer matrix in liquid state.
  2. Polymerize and solidify the redistributed polymer nanocomposites.

Using this technique, Wang et al. fabricated various biomimetic interfaces and surfaces and found that the functional gradient designs, with reduced stress concentrations, simultaneously improved the mechanical strength and durability over an order of magnitude compared with the traditional homogeneous counterparts.

The magnetically-actuated functional gradient nanocomposites can be further integrated into advanced additive manufacturing techniques to create a wide range of functional heterogeneous materials with unprecedented combinations of mechanical properties.

TEM image of functional gradient nanocomposites for compliant-stiff-compliant transitions

Read the full article here:
Zhengzhi Wang,* Xiaoming Shi, Houbing Huang,* Chenmin Yao, Wen Xie, Cui Huang, Ping Gu, Xingqiao Ma, Zuoqi Zhang and LongQing Chen
DOI: 10.1039/c7mh00223h

 

Mengye Wang is a member of the Community Board for Materials Horizons. Currently, she works as a postdoctoral fellow in the Department of Applied Physics at The Hong Kong Polytechnic University. She has a keen interest in advanced materials for environmental and energy applications, including photocatalysis and electrocatalysis.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Materials Horizons First Immediacy Index

Materials Horizons, the new home for rapid reports of exceptional significance on innovative materials, has received its first immediacy index from Thomson Reuters’ Journal Citation Reports® (JCR).

Immediacy Index – 3.324

This puts Materials Horizons straight into the top 5 immediacy-indexed journals publishing primary research in the Materials Science, Multidisciplinary JCR category.

We are delighted that our authors’ work is being received and cited so well by the community and would like to thank all of our authors, referees and Board members for their support of this new journal.

Submit your next high impact paper to Materials Horizons and enjoy all of the benefits of being a Royal Society of Chemistry author!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)