HOT article: precise, high speed droplet formation

Isolating biological or biochemical content in aqueous droplets within an immiscible oil medium on a microfluidic device allows samples to be transported without cross-contamination or dispersion.  But generating droplets at a suitably high speed with precise volume control has been a challenge.

Now Pei-Yu Chiou and Sung-Yong Park from UCLA have developed a pulse laser-driven droplet mechanism that allows droplet formation of up to 10000 droplets per second with controllable volumes between 1-150 pL and >1% volume variation.

Their device (shown below) consists of two microfluidic channels connected by a nozzle-like opening. A highly focused intense laser pulse induces a rapidly expanding cavitation bubble to push the nearby water into the oil channel for droplet formation.

This HOT article is free to access until the end of March – so download it today and see how they did it!

High-speed droplet generation on demand driven by pulse laser-induced cavitation
Sung-Yong Park, Ting-Hsiang Wu, Yue Chen, Michael A. Teitell and Pei-Yu Chiou
Lab Chip, 2011, 11, 1010-1012
DOI: 10.1039/C0LC00555J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

One Response to “HOT article: precise, high speed droplet formation”

  1. […] Park, S., Wu, T.-H., Chen, Y., Teitell, M. A., Chiou, P. Y., “High-speed droplet generation on demand driven by pulse laser-induced cavitation,” Lab on a Chip, Vol. 11, pp. 1010 – 1012, 2011. (Selected as a HOT article) […]

Leave a Reply