Zeolites net new carbon allotropes

Chemistry World article written by Jonathan Midgley.

Previously unknown carbon allotropes have been predicted by scientists exploring their links with well-known network topologies. The new structures are highly stable and transparent, some with larger optical band gaps than diamond.

Advanced computational techniques are leading the search for new forms of carbon and other group 14 elements. Now, Davide Proserpio from the University of Milan, Italy, and co-workers, have shown that fundamental network descriptors known about and catalogued for many years can help predict as well as classify and compare allotropes.

Interested to know more?

Read the full article in Chemistry World by Jonathan Midgley.

Take a look at the original Open Access research article:

From zeolite nets to sp3 carbon allotropes: a topology-based multiscale theoretical study
Igor A. Baburin, Davide M. Proserpio, Vladimir A. Saleev and Alexandra V. Shipilova
Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/C4CP04569F

Six new carbon allotropes

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Fundamental processes in semiconductor nanocrystals – PCCP themed issue online now

PCCP is delighted to present a themed collection which includes a number of great articles on Fundamental Processes in Semiconductor Nanocrystals. The issue was guest edited by Efrat Lifshitz (Technion, Israel) and Laurens Siebbeles (TU Delft, The Netherlands) and brings together a collection of contributed papers that cover current interest in a wide variety of topics associated with semiconductor crystals. You can read the Guest Editor’s full introduction to the issue in their Editorial.

There are a number of great contributions in this issue, including:

Influence of nanoparticle shape on charge transport and recombination in polymer/nanocrystal solar cells
Zhe Li, Weiyuan Wang, Neil C. Greenham and Christopher R. McNeill
Phys. Chem. Chem. Phys., 2014,16, 25684-25693

Multiple exciton generation in cluster-free alloy CdxHg1−xTe colloidal quantum dots synthesized in water
Stephen V. Kershaw, Sergii Kalytchuk, Olga Zhovtiuk, Qing Shen, Takuya Oshima, Witoon Yindeesuk, Taro Toyoda and Andrey L. Rogach
Phys. Chem. Chem. Phys., 2014,16, 25710-25722

Take a look at the themed collection online now to see all of the great contributions!


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paul von Ragué Schleyer, 1930–2014

Credit: U of Georgia

Paul von Ragué Schleyer, a leading figure in physical organic chemistry, died on November 21st at his home in Georgia, USA. Schleyer pioneered the use of computational chemistry in characterizing new and widely used concepts and made vast contributions to a broad range of physical organic, organometallic, inorganic, and theoretical chemistry topics.

‘Paul Schleyer was one of the greatest chemists of the 20th century’, says Herbert Mayr, from Ludwig Maximilian University of Munich, Germany. ‘Paul’s impact on Organic Chemistry is only inadequately reflected by the impressive numbers of articles he had published. Of even greater importance was his influence on the thinking of a countless number of scientists who discussed with him their projects, collaborated with him, or just attended his lectures.’

Schleyer attended Princeton University gaining an A.B. degree in Chemistry in 1951, followed by Harvard University where he received a Ph.D. in physical organic chemistry under Paul Bartlett in 1957. In 1976 Schleyer moved to the University of Erlangen-Nuremberg, in Germany and became a frequent speaker at international meetings, forming close relationships with many chemists with whom he would continue to maintain an active correspondence. Schleyer extended his career well past the mandatory retirement age in Germany and continued to contribute to the field as Graham Perdue Professor at the University of Georgia.

PCCP would like to send our deepest condolences to Paul Schleyer’s family and colleagues.

Is C60 buckminsterfullerene aromatic?
Zhongfang Chen,  Judy I. Wu,   Clémence Corminboeuf,  Jonathan Bohmann,  Xin Lu,  Andreas Hirsch and  Paul von Ragué Schleyer
Phys. Chem. Chem. Phys., 2012,14, 14886-14891

D 3h CN3Be3+ and CO3Li3+: viable planar hexacoordinate carbon prototypes
Yan-Bo Wu, Yan Duan, Gang Lu, Hai-Gang Lu, Pin Yang, Paul von Ragué Schleyer, Gabriel Merino, Rafael Islas and Zhi-Xiang Wang
Phys. Chem. Chem. Phys., 2012,14, 14760-14763

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Size selected clusters and particles: from physical chemistry and chemical physics to catalysis – PCCP themed issue online now

PCCP is delighted to present its latest themed collection which includes a great selection of articles on Size selected clusters and particles. The issue was guest-edited by Jeroen van Bokhoven (Institute for Chemical and Bioengineering ETH Zurich) and Stefan Vajda (Argonne National Laboratory) and you can read an introduction to this issue in their editorial.

The outside front cover features an article from Anastassia N. Alexandrova et al. entitled Pure and Zn-doped Pt clusters go flat and upright on MgO(100).

There are many other great contributions to this themed issue including:

Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness
W. Jones, R. Su, P. P. Wells, Y. Shen, N. Dimitratos, M. Bowker, D. Morgan, B. B. Iversen, A. Chutia, F. Besenbacher and G. Hutchings
Phys. Chem. Chem. Phys., 2014,16, 26638-2664

Propene epoxidation with O2 or H2–O2 mixtures over silver catalysts: theoretical insights into the role of the particle size
M. Boronat, A. Pulido, P. Concepción and A. Corma
Phys. Chem. Chem. Phys., 2014,16, 26600-26612

Make sure to take a look at the full contents of this themed collection online now!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Recent HOT PCCP articles

Check out the following HOT articles, these have all been made free to access for a limited time:

Optical activity in the scattering of structured light
Robert P. Cameron and Stephen M. Barnett
Phys. Chem. Chem. Phys., 2014,16, 25819-25829
DOI: 10.1039/ C4CP03505D

Ultrafast photoinduced charge transport in Pt(II) donor–acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor
Igor V. Sazanovich, Jonathan Best, Paul A. Scattergood, Michael Towrie, Sergei A. Tikhomirov, Oleg V. Bouganov, Anthony J. H. M. Meijer and Julia A. Weinstein
Phys. Chem. Chem. Phys., 2014,16, 25775-25788
DOI: 10.1039/C4CP03995E

Temperature sensing from the emission rise times of Eu3+ in SrY2O4
V. Lojpur, Ž. Antić and M. D. Dramićanin
Phys. Chem. Chem. Phys., 2014,16, 25636-25641
DOI: 10.1039/C4CP04141K

Effects of thermal disorder on the electronic properties of ordered polymers
Marko Mladenović and Nenad Vukmirović
Phys. Chem. Chem. Phys., 2014,16, 25950-25958
DOI: 10.1039/C4CP04425H

First principles study of point defects in SnS

Brad D. Malone, Adam Gali and Efthimios Kaxiras
Phys. Chem. Chem. Phys., 2014,16, 26176-26183
DOI: 10.1039/C4CP03010A

Thermal conductivity of organic bulk heterojunction solar cells: an unusual binary mixing effect
Zhi Guo, Doyun Lee, Joseph Strzalka, Haifeng Gao, Libai Huang, Ali M. Khounsary and Tengfei Luo
Phys. Chem. Chem. Phys., 2014,16, 26359-26364
DOI: 10.1039/C4CP04099F

Stacking disorder in ice I
Tamsin L. Malkin, Benjamin J. Murray, Christoph G. Salzmann, Valeria Molinero, Steven J. Pickering and Thomas F. Whale
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP02893G

Electronic effects of ligand substitution on metal–organic framework photocatalysts: the case study of UiO-66
Lijuan Shen, Ruowen Liang, Mingbu Luo, Fenfen Jing and Ling Wu
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP04162C

Spin-crossover in phenylazopyridine-functionalized Ni–porphyrin: trans–cis isomerization triggered by π–π interactions

Gerard Alcover-Fortuny, Coen de Graaf and Rosa Caballol
Phys. Chem. Chem. Phys., 2014
DOI: 10.1039/C4CP04402A

Hidden aspects of the Structural theory of chemistry: MC-QTAIM analysis reveals “alchemical” transformation from a triatomic to a diatomic structure
Mohammad Goli and Shant Shahbazian
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP03722G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Solution to Ancient Problem

Written by Victoria Parkes, Guest web writer based at the University of Nottingham

Take two bodies of water whose initial characteristics are identical, except for their temperature. Measure how long it takes these two bodies of water to cool to the same specified lower temperature. Explain why the initially hotter water apparently cools faster.

Alright, so it’s a bit more complicated than that, with precise experimental parameters that must be adhered to, but the essence of the problem remains the same. There appears to be a difference in the relative rates at which different bodies of water cool depending on their starting temperatures. The Mpemba effect (as it is often known) may sound simple, but it is a phenomenon that is often disputed, deceptively difficult to analyse, has many proffered explanations and a historical pedigree going back to Aristotle. A few years ago the RSC even held a competition to try to settle the matter and reach a consensus of opinion. Yet despite the declaration of a winner, apparently not everybody agreed that the question was quite settled once and for all.

Now, Zhang et al. are throwing their hat into the ring with a new answer. They say that they’ve approached the problem from an unusual angle, and present new quantitative evidence to support their argument. So have they finally cracked it, or is this just the latest in a long line of possible explanations that extends back over thousands of years? With a topic as divisive as this, I’m not placing any bets just yet.

Read the original manuscript online now!

Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox

Xi Zhang, Yongli Huang, Zengsheng Ma, Yichun Zhou, Ji Zhou, Weitao Zheng, Qing Jiang and Chang Q. Sun

Phys. Chem. Chem. Phys., 2014, DOI: 10.1039/C4CP03669G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Charge generation mechanism in organic solar cells – PCCP themed issue online now

PCCP is delighted to present its latest themed collection which includes an excellent selection of interesting and timely articles on charge generation mechanism in organic solar cells. The issue was guest-edited by Maria Antonietta Loi and Alessandro Troisi and you can read their editorial to find out more.

The outside front cover features a Perspective article entitled Charge separation energies at organic heterojunctions: on the role of structural and electrostatic disorder from Frédéric Castet, David Beljonne et al.

There are plenty of other great contributions in this themed collection, including:

Charge generation in polymer–fullerene bulk-heterojunction solar cells
Feng Gao and Olle Inganäs
Perspective, DOI: 10.1039/C4CP01814A

Ultrafast charge separation and nongeminate electron–hole recombination in organic photovoltaics
Samuel L. Smith and Alex W. Chin
Communication, DOI: 10.1039/C4CP01791A

Make sure to check out the full contents of the themed issue online now.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ELECTROCHEM 2014 Poster Prize

Congratulations to Jing Wang who was recently awarded a PCCP poster prize at the ‘Electrochem2014′ conference which took place at Loughborough Univeristy, UK from 7th–9th September. Jing Wang’s poster was entitled ‘Electrodeposition and Characterisation of Novel Ni-NbOx Composite Coatings as a Diffusion Barrier for High Temperature Electronics Packaging’ and he was awarded the prize by Professor Rob Hillman, PCCP Advisory Board member.

The Electrochemconference series has emerged as an established annual UK & Ireland event, where a cross-disciplinary range of electrochemistry, fundamental and applied, is on show with a particular view on broadening exchange of knowledge, providing information about the latest research developments, linking academia to industry and suppliers, and engaging with the next generation of electrochemists and electrochemical entrepreneurs.

PCCP will be awarding more Poster Prizes next year, so please do let us know of any suitable conferences which PCCP could sponsor in 2015.

Electrochem 2014 - Poster prize winner

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Poster prizes at UKTC2014

PCCP was delighted to award poster prizes at the National Training School in Theoretical Chemistry which recently took place at Oxford University, UK. The School is for graduate students from across the UK and aims to provide a broad-based introduction to key concepts and techniques that underpin research in theoretical and computational chemistry.

The posters were judged by Prof. Knowles, University of Cardiff and Prof. Doye, University of Oxford and each student received a PCCP prize certificate, as well as a financial award from the journal. The winners were:

  • Jack Davis, from Birmingham University, with a poster entitled Characterisation of Chemical Ordering in Palladium-Iridium Nanoalloys
  • Robert Pennifold, from Bristol, whose poster was entitled Understanding Reaction Mechanisms in Metal Catalysts using Ab Initio Methods
  • Julien Sindt, from Edinburgh University, with his poster Effective many-body interactions in polar fluids and their effects on structure and phase behaviour

UKTC poster prize winners

PCCP will be awarding more Poster Prizes next year, so please do let us know of any suitable conferences which PCCP could sponsor in 2015.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Recent HOT PCCP articles

Check out the following HOT articles, these have all been made free to access for a limited time:

Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopyVibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy
Luuk J. G. W. van Wilderen, Daniela Kern-Michler, Henrike M. Müller-Werkmeister and Jens Bredenbeck
Phys. Chem. Chem. Phys., 2014,16, 19643-19653
DOI: 10.1039/C4CP01498G

Excited-state wavepacket and potential reconstruction by coherent anti-Stokes Raman scattering
David Avisar and David J. Tannor
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP03233K

Creating electrochemical gradients by light: from bio-inspired concepts to photoelectric conversion
Xiaojiang Xie and Eric Bakker
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP02566K

Potential energy surfaces and quasiclassical trajectory study of the O + H2+ → OH+ + H, OH + H+ proton and hydrogen atom transfer reactions and isotopic variants (D2+, HD+)
Miguel Paniagua, Rodrigo Martínez, Pablo Gamallo and Miguel González
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP02631D

Hydrogen bonding, halogen bonding and lithium bonding: an atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter- and intra-molecular bonding
Abhishek Shahi and Elangannan Arunan
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP02585G

Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literaturePhotocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature
Stefano Protti, Angelo Albini and Nick Serpone
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP02828G

Water-mediated interactions between trimethylamine-N-oxide and urea
Johannes Hunger, Niklas Ottosson, Kamila Mazur, Mischa Bonn and Huib J. Bakker
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP02709D

On the directionality and non-linearity of halogen and hydrogen bonds
J. Grant Hill and Anthony C. Legon
Phys. Chem. Chem. Phys., 2014, Advance Article
DOI: 10.1039/C4CP03376K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)