Julian Fairey is an Associate Professor in the Department of Civil Engineering at the University of Arkansas with research and teaching interests related to aquatic chemistry and physical-chemical treatment processes for water. His research group focuses on various aspects of drinking water disinfection byproduct formation and control and development of sensors for distribution system monitoring. Prior to joining the University of Arkansas, he earned a BSc at the University of Alberta in Edmonton, Canada, a MS and PhD at The University of Texas at Austin, and had a post-doctoral research appointment at Carnegie Mellon University in Pittsburgh, PA, all in Civil-Environmental Engineering.
Read his Emerging Investigators series article “Trihalomethane, Dihaloacetonitrile, and Total N-nitrosamine Precursor Adsorption by Modified Carbon Nanotubes (CNTs) and CNT Micropillars” and find out more about his research in the interview below:
Your recent Emerging Investigator Series paper focuses on the absorbance of precursors of disinfection byproducts on carbon nanotubes. How has your research evolved from your first article to this most recent article?
Like many academics, my first article was published when I was a graduate student and was based data I collected in the lab. Now, as a faculty member, I conceive of ideas that are executed (after being improved upon!) by my graduate students – I try to help with experimental design, interpretation, and messaging, but need to rely on others to collect interesting primary data. So, my role has evolved since my first article, from Player to General Manager. But my goal all along has remained the same – to identify and solve important problems related to water treatment.
What aspect of your work are you most excited about at the moment?
My collaborations – in this particular article, we worked with a material scientist from the University of Cambridge and a data scientist from my institution, the University of Arkansas – the quality and impact of my work are greatly enhanced as a result and am looking forward to continuing these collaborations and developing new ones.
In your opinion, what is the biggest impact to the environment presented by disinfection byproducts?
In the United States, many water utilities have altered their disinfection strategy in an attempt to meet disinfection byproduct regulations. This practice can have unintended consequences that may negatively impact other areas of water treatment and distribution – so, it can be argued that the biggest impact of DBPs has been indirect – in the well- intentioned pursuit of meeting DBP regulations, other aspects of drinking water quality have been compromised, sometimes with devastating results. This has really spurred my interest in improving the understanding DBP formation and developing strategies for DBP precursor removal.
What do you find most challenging about your research?
I worry that I am not identifying the truly important problems related to water treatment and distribution – perhaps in the pursuit of doing something novel, I am preoccupied, and my time could be put to better use if I went a different direction. As an academic, it’s hard to know when and how to course-correct.
In which upcoming conferences or events may our readers meet you?
I reliably attend the AWWA Water Quality & Technology Conference and the Gordon Research Conference for Environmental Sciences: Water.
How do you spend your spare time?
I just bought a house, so I spend a good amount of time learning how to fix various things and driving to and from Lowe’s. To clear my mind, I workout and (try to) play piano and chess; the occasional glass of scotch, bourbon, and beer help too!
Which profession would you choose if you were not a scientist?
I love sports and the advising part of my job, so I think I would really enjoy coaching or managing a team. A sabbatical with a MLB or NHL franchise would be pretty cool!
Can you share one piece of career-related advice or wisdom with other early career scientists?
Be kind, honest, and humble. I feel certain aspects of academia may (unintentionally) encourage otherwise behaviors.