Archive for March, 2011

Chemistry World news article on dye treatment

A Catalysis Science & Technology article has appeared in the society magazine Chemistry World. The paper, by Colin P. Horwitz, Terrence J. Collins and colleagues from Carnegie Mellon University, Pittsburgh, has recently been published as an Advance Article, read the original manuscript:

Fe-TAML/hydrogen peroxide degradation of concentrated solutions of the commercial azo dye tartrazine
Evan S. Beach, Ryan T. Malecky, Roberto R. Gil, Colin P. Horwitz and Terrence J. Collins
Catal. Sci. Technol. , 2011, Advance Article
DOI: 10.1039/C0CY00070A, Paper

.

Real-world treatment for dye-contaminated effluents

US scientists have found that a dye oxidation process using low levels of an iron catalyst could be used to degrade highly contaminated wastewater under ambient conditions.

128 tonnes of dyes are released daily into the global environment and the cost to the textile industry of removing the dyes is high. Wastewater remediation is challenging because of its diverse and often changing composition. Multiple technologies are employed to achieve the regulatory standard for treated water discharge. In some cases, remediation of highly concentrated waste streams becomes a greater challenge because biological treatment is too slow or ineffective or chemical treatment is inefficient… Read the full article in Chemistry World

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Sustainable raw materials for chemistry

As the natural supplies of fossil fuels quickly deplete due to the increasing demands of modern society, industrial chemistry needs to find alternative sources for the essential building blocks on which it relies upon. New raw material deriving from sustainable sources need to be exploited to diminish the use of petrol-based products.

A viable alternative has been investigated by Jones et al., whose UK-based research focused on the catalytic conversion of easily produced ethanol into 1,3-butadiene, a common precursor in the industrial production of rubber. The groups developed a silica-supported multi-metallic system that using cooperative catalysis drives the transformation of ethanol into acetaldehyde and through a number of other intermediates, ultimately produces 1,3-butadiene.

The catalysts could be easily prepared mixing slurries of water-soluble salts of the desired metals with silica of different porosity, followed by water evaporation and calcination in air at different temperatures.

Several combinations of metals and silica supports were tested, finding the ZnO:ZrO2 couple to provide the higher conversions and selectivity for the diene (38 %) in 1 to 3 hours, although with relevant amounts of ethene produced as a side product. Even better selectivity could be achieved introducing extra acetaldehyde in the reaction. When ethanol was fed into the system in these conditions the selectivity for 1,3-butadiene increased to 66 %. A tri-metallic system based on zinc, copper and zirconium was also investigated, providing higher conversions but lower selectivity.

Find more in the original article.

Investigations into the conversion of ethanol into 1,3-butadiene
Matthew D. Jones, Callum G. Keir, Carlo Di Iulio, Ruth A. M. Robertson, Cliff V. Williams and David C. Apperley
Catal. Sci. Technol., 2011, Advance Article
DOI: 10.1039/C0CY00081G, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Hybrid membranes for heterogeneous catalysis

Membranes are versatile supports for the immobilisation of catalysts; they allow the use of different manufacturing materials and their properties such as pore size, morphology, flexibility, chemical and thermal stability can be finely tuned. These polymeric membranes have successfully been used to support chiral complexes of ruthenium-Binap and manganese-Salen in enantioselective epoxidation and hydrogenation reactions. Although versatile and ideal for industrial scale applications, their major drawback proved to be metal leeching, which reduced their efficiency and contaminated the products.

Research groups lead by Barbaro recently developed a series of organic/inorganic polymeric membranes incorporating rhodium complexes of chiral diphosphino ligands that proved nearly immune to metal leeching and provided clean, enantioselective hydrogenation of methyl-2-acetoamidoacrylate with enantiomeric excesses comparable with their homogeneous analogues. The novelty of the approach resided in the incorporation of the metal occurring on the preformed membrane, thus avoiding derivatisation steps and chemical modifications.

The reaction times proved to be considerably longer than the homogeneous catalyst with yields exceeding 90 % only after 17 hours, but enantioselectivities of up to 98 % could be achieved without any loss of activity after five cycles using methanol as the solvent. A screening of several other substrates and solvents proved the versatility of the system. Remarkably, the most performing membranes presented a metal leeching of less than 1 ppm even after 25 hours of use in methanol, outperforming existing catalytic membranes. The stability of the membrane-complex adduct is thought to reside in the interaction between the metal and tungsten oxide (WO3) or sulphite anions in the membrane structure.

Find more about the article here.

Enantioselective hydrogenation of prochiral substrates in catalytic membrane reactors
Pierluigi Barbaro, Claudio Bianchini, Francesca Liguori, Claudio Pirovano and Haruo Sawa
Catal. Sci. Technol., 2011, Advance Article
DOI: 10.1039/C0CY00030B, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Perspective: One Click beyond

Silvia Díez-González from Imperial College London reviews the role of copper complexes as catalysts in Click azide–alkyne cycloadditions in this new Catalysis Science and Technology Perspective.

The Perspective is intended to inspire efforts to develop more efficient catalytic systems for this important Click Chemistry reaction.

This Perspective has been chosen as a Dalton Transactions Hot Article. Find out more here.


Well-defined copper(I) complexes for Click azide–alkyne cycloaddition reactions: one Click beyond
Silvia Díez-González
Catal. Sci. Technol., 2011, Advance Article
DOI: 10.1039/C0CY00064G, Perspective

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Discovery – Can Chemistry Save the World?

The BBC radio series Discovery – Can Chemistry Save the World? presents an episode on Green Chemistry, well worth a listen:

http://www.bbc.co.uk/i/p00dtz7p/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)