Archive for March, 2017

Paper of the month: Novel alkoxyamines for the successful controlled polymerization of styrene and methacrylates

Reversible addition-fragmentation chain transfer polymerization (RAFT) and transition metal-mediated radical polymerization (TMM-RDRP) are two widely used techniques employed for the preparation of controlled polymeric architectures. However, both of them exhibit significant colouring and complete purification of the final materials is challenging. On the other hand, nitroxide mediated polymerization (NMP) requires no or minimal purification although designing alkoxyamines that can facilitate the controlled polymerization of both styrene and methacrylates is a challenge. In this contribution, Asua and co-workers employed three different alkoxyamines to study the homopolymerization of styrene and its chain extension with methacrylates. Upon careful evaluation of the reaction kinetics as well as variation of the polymerization temperature, high monomer conversions with uncompromised end group fidelity could be achieved. A wide range of molecular weights were targeted in order to identify the limitations of the system. It was found that for targeted degrees of polymerization beyond 333, there was an increased difference between theoretical and experimental molecular weights, due to the thermal initiation of styrene. In addition, the nature of the substituents in the nitroxide adduct was also found to be crucial for the controlled polymerization of styrene with bulkier adducts providing more extensive control. The retention of the reactive alkoxyamine chain end was further confirmed via nuclear magnetic resonance (NMR) and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-ToF-MS). Well-defined PS-b-PBMA and PMMA-b-PS block copolymers were also successfully prepared highlighting these classes of alkoxyamines as a versatile mediator for the controlled polymerization of both methacrylates and styrene.

 

 

Tips/comments directly from the authors:

  1. It is important to monitor the temperature throughout the polymerisation in order to ensure optimum kinetics.

 

  1. The appropriate temperature should be employed for methacylates (< 100 °C) and styrene (> 110 °C). For instance, this can influence the final molar mass distributions of a block copolymer. The preparation of a poly(methyl methacrylate) macro-alkoxyamine first, followed by the chain extension with styrene provides a PMMA-b-PS block copolymer with moderate MMD. However, the preparation of the PS block first would yield a block copolymer with high dispersity value due, in part, to the high temperatures employed.

 

  1. Several matrix/salt combinations should be tested when conducting MALDI-ToF MS analysis. The reactive chain ends might not be observed with some matrixes, such as trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB).

 

 

Read this exciting research for free until 16/05/2017 through a registered RSC account:

 

Novel alkoxyamines for the successful controlled polymerization of styrene and methacrylates
Polym. Chem., 2017,8, 1728-1736, DOI: 10.1039/c6py02190e

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chemical weapons trapped the swell way

UK researchers have shown that polymers can absorb chemical warfare agents. When dried, the densely crosslinked polystyrene networks can swell to accommodate organic molecules. They can therefore act not just as universal sorbents for soaking up a wide range of chemicals, but also as a new way to decontaminate stockpiles of chemical weapons.

 

Source: © Royal Society of Chemistry
Reaction used to prepare the hypercrosslinked polymer networks



Read the full story by Hugh Cowley in Chemistry World.


This article is free to access until 26 April 2017.

C Wilson et al, Polym. Chem., 2017, DOI: 10.1039/c7py00040e

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Global Conference on Polymer and Composite Materials 2017

23-25 May 2017, Guangzhou, China

 

Polymer and Composite Materials 2017, which takes place at the South China University of Technologyis dedicated to cover all theoretical and experimental aspects of polymers and composite materials. Building on the hugely successful preceding conferences (PCM 2014 in Ningbo, PCM 2015 in Beijing, and PCM 2016 in Hangzhou), PCM 2017 will provide an ideal academic platform for researchers to present their latest findings, and to facilitate networking and in-depth discussion with peers from Asia, Europe and USA.

The scientific program will focus not only on current advances in the research, but also in the production and use of polymers and composite materials in different fields. The conference setting has a highly focused technical program through plenary, invited, contributed, and poster presentations, supported by Polymer Chemistry and Molecular Systems Design & Engineering.

In addition, the conference will also offer the possibility to publish your research either in the conference proceedings (Indexed by Ei, Scopus, Inspec, CPCI, etc) or in well-known journals with ISI impact factors. You can find out more about how to submit your paper via the publication guide.

Keynote speakers:

Register for the event here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Focus on: Carbon Dioxide and Polymers

Carbon dioxide constitutes a small amount of our atmosphere (currently around 0.04%) however it is vital for the survival of life on our planet. CO2 has been found to be a useful trigger for stimuli-responsive materials as it is benign, abundant, “green” and inexpensive. The reversible self-assembly of polymers and their response to the presence of CO2 has been of particular interest, for example in biomedical applications.

There is also a growing interest in carbon capture as environmental concerns increase, due to the rise in CO2 levels since the industrial age. Carbon capture has been proposed as a method to reduce the amount of CO2 in the atmosphere. Therefore several researchers have been interested in preparing materials which could be used absorb and store CO2 to remove it from the atmosphere.

This month we look at three articles published in Polymer Chemistry; two articles which describe CO2 responsive polymers, and one which investigates materials for CO2 absorption.

1. Oxygen and carbon dioxide dual gas-responsive homopolymers and diblock copolymers synthesized via RAFT polymerization
Xue Jiang, Feng Chun, Guolin Lu, Huang Xiaoyu
Polym. Chem., 2017, 8, 1163-1176; DOI: 10.1039/C6PY02004F

Firstly a monomer containing both O2 and CO2 responsive groups was prepared (containing a CF3 and tertiary amine group), and polymerised by reversible addition-fragmentation chain-transfer (RAFT) polymerisation. This polymer and a diblock copolymer containing PEG, showed responsivity when O2 and CO2 were bubbled through the solution compared with N2. The results suggest potential biomedical applications for the PEG containing polymer which formed micelles in solution.

2. CO2-Responsive graft copolymers: synthesis and characterization
Shaojian Lin, Anindita Das, Patrick Theato
Polym. Chem., 2017, 8, 1206-1216; DOI: 10.1039/C6PY01996J

Through a combination of controlled radical polymerisation and a grafting-to post-polymerisation modification, the authors describe the synthesis of CO2 responsive graft-copolymers, where the incorporation of a tertiary amine monomer imparts the CO2 responsive behaviour. The graft copolymers could be self-assembled to form vesicles in aqueous media, which swelled upon purging with CO2, for applications such as responsive drug delivery vehicles.

3. Microporous polyimide networks constructed through a two-step polymerization approach, and their carbon dioxide adsorption performance
Hongyan Yao, Na Zhang, Ningning Song, Kunzhi Shen, Pengfei Huo, Shiyang Zhu, Yunhe Zhang, Shaowei Guan
Polym. Chem., 2017, 8, 1298-1305; DOI: 10.1039/C6PY01814A

In contrast to the two previous articles, this paper reports the preparation of microporous polyimide networks, through polycondensation reaction and subsequent crosslinking. The formation of micropores was promoted due to the crosslinked structure, which restricted macromolecular conformational changes. The materials exhibited BET surface areas up to 497 m2g-1, with comparable CO2 uptake values to other microporous polyimides prepared from rigid tri-dimensional monomers.

Read these articles for free until April 16th


About the webwriterFiona Hatton

Dr. Fiona Hatton is a web writer for Polymer Chemistry. She is currently a postdoctoral researcher in the Armes group at the University of Sheffield, UK. Find her on Twitter: @fi_hat

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Vesicles of double hydrophilic pullulan and poly(acrylamide) block copolymers: a combination of synthetic- and bio-derived blocks

Willersinn et al. report the synthesis of double hydrophilic pullulan and poly(acrylamide) block copolymers.

Double hydrophilic block copolymers (DHBC) self-assemble to various structures in aqueous solutions due to a strong difference in hydrophilicity. This is in contrast to amphiphilic block copolymers that self-assemble due to the insolubility of the hydrophobic block in water. In their recent contribution, Schmidt and co-workers were able to extend the principle of double hydrophilic self-assembly to novel polysaccharide-polyacrylamide block copolymers namely pullulan-b-poly(N,N-dimethylacrylamide) (Pull-b-PDMA) and pullulan-b-poly(N-ethylacrylamide) (Pull-b-PEA). The bio-derived pullulan block was obtained via acid catalyzed depolymerisation, while the polyacrylamide homopolymer blocks were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Subsequently the blocks were conjugated via copper catalyzed azide alkyne cycloaddition (CuAAC). The presence of formed vesicular structures was investigated via cryogenic electron microscopy (cryo SEM), static light scattering (SLS) and dynamic light scattering (DLS) measurements showing diameters in the range of 200 to 500 nm. Finally, laser confocal scanning microscopy (LSCM) was employed using Rhodamine B staining or Rhodamine B labelled block copolymers to image the formed particle structures. These novel vesicular structures may find use in a wide range of applications including drug delivery.


Tips/comments directly from the authors:

1. The synthesis of block copolymers via CuAAc can be significantly simplified via the utilization of azide functionalized resins. As described in the paper the alkyne functionalized building block is utilized in excess. The resin is added after sufficient reaction time directly to the reaction mixture to react with residual alkyne end functionalized polymer and finally the resin is easily removed via filtration after the reaction. Therefore, no optimization of equivalents or absolute molecular weight data is needed to obtain a pure product without homopolymer contamination.
2. The choice of blocks is crucial for DHBC self-assembly in water. The blocks have to feature a significant difference in hydrophilicity. Moreover, high polymer concentrations are needed to obtain self-assembled structures.
3. For a pure DHBC self-assembly the utilized blocks should not feature LCST or other stimulus responsive behaviour that alters the solubility of the individual blocks. Otherwise the self-assembly might be driven via hydrophobic interactions as with an amphiphilic block copolymer.

Read this exciting research for free until 16/04/2017 through a registered RSC account:

Vesicles of double hydrophilic pullulan and poly(acrylamide) block copolymers: a combination of synthetic- and bio-derived blocks
Polym. Chem., 2017,8, 1244-1254, DOI: 10.1039/c6py02212j

—————-

About the webwriterAthina Anastasaki

Dr. Athina Anastasaki is a web writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please visit this website for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)