Paper of the week: Fully biodegradable antibacterial hydrogels

‘Bacterial infection is a serious problem in many areas, especially those involving the use of biomaterials. According to World Health Organization (WHO) statistics, at any time, over 1.4 million people worldwide suffer from infectious complications acquired in hospital, which have much to do with the use of medical devices. Hydrogels are three-dimensional polymer networks that are able to retain a large fraction of aqueous solvent within their structures. Due to their high water content and soft consistency, which is similar to natural tissue, hydrogels resemble natural living tissue more than any other class of synthetic biomaterial. Therefore, hydrogels have received extraordinary attention as biomaterials for use in biomedical applications, such as tissue engineering, wound dressing materials, immunoisolation16 and drug delivery. Thus, fabricating hydrogels with antibacterial properties is crucial for the biomedical field.’

Graphical abstract: Fully biodegradable antibacterial hydrogels via thiol–ene “click” chemistry

In this work, Zhu and co-workers prepared fully biodegradable antimicrobial hydrogels via a thiol–ene “click” reaction under human physiological conditions using multifunctional poly(ethylene glycol) (PEG) derivatives as precursors. Water soluble and degradable PEG derivatives with multi-enes and multi-thiols, respectively, were synthesized by polycondensation of oligo(ethylene glycol) (OEG) with “clickable” monomers. Ammonium groups with long alkyl chains were incorporated into one of the precursors covalently, using dodecyl bis(2-hydroxyethyl) methylammonium chloride as a comonomer.  These types of cationic PEG-type hydrogels showed strong antibacterial abilities against both Gram- negative and Gram-positive bacteria due to the ammonium moieties. Moreover, the hydrogel with fewer ammonium moieties still possessed significant antibacterial abilities, but low toxicity, and has the potential to be used as a medical material.

Fully biodegradable antibacterial hydrogels via thiol–ene “click” chemistry by Hong Du, Guangyu Zha, Lilong Gao, Huan Wang, Xiaodong Li, Zhiquan Shena and Weipu Zhu, Polym. Chem. 2014, 5, 4002-4008.

Julien Nicolas is a web-writer and advisory board member for Polymer Chemistry. He currently works at Univ. Paris-Sud (FR) as a CNRS researcher.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)