Archive for the ‘Chemistry World Articles’ Category

Nanomagnets clean blood: Nanoscale article in Chemistry World

Nanoparticles that never have to enter the body can capture harmful components in blood, scientists in Switzerland have shown.

Removing unwanted molecules from the blood is the most direct way to cure or prevent many illnesses. An example of this approach is dialysis where small molecules like urea are filtered out to treat patients with renal failure. As this separation method is size-selective, larger noxious molecules or cells cannot be efficiently eliminated from the blood in this way.

Interested to know more? Read the full news article by Rowan Frame in Chemistry World here…

Read the article by  I K Herrmann et al. in Nanoscale:

Nanomagnet-based removal of lead and digoxin from living rats
Nanoscale, 2013, Accepted Manuscript
DOI: 10.1039/c3nr02468g

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Self-powering cloth electronics

Scanning electron micrograph image of the tin dioxide cloth

Scanning electron micrograph image of the tin dioxide cloth

Chinese scientists have made compact, self-powering, bendable photodetectors from tin dioxide cloth.

Flexible electronics are an exciting area of research with foldable displays and wearable electronics being potential uses. Self-contained power generation complements flexibility by removing the need for bulky external power supplies to make smaller devices more feasible.

Guozhen Shen from the Chinese Academy of Sciences, and co-workers at the Wuhan National Laboratory for Optoelectronics, have made tin dioxide cloth by growing tin dioxide nanoparticles on a carbon cloth template to give hollow microtubes of tin dioxide in a woven pattern. Tin dioxide is a wide band gap semi-conductor that has high quantum efficiency in the UV region, making it a good material for both battery electrodes and light sensing. Shen’s team integrated a tin dioxide cloth-based UV photodetector and a tin dioxide cloth-based lithium-ion battery into one device to form a flexible, self-powering photodetector that can be trimmed to match any shape. The detector’s performance is comparable to conventional devices and, importantly, no change in performance occurs when the cloth is folded.

Read more in the Chemistry World article by Emily Skinner.

And check out the original research in Nanoscale:

SnO2-microtubes-assembled cloth for fully-flexible self-powered photodetector nanosystems
Xiaojuan Hou, Bin Liu, Xianfu Wang, Zhuoran Wang, Qiufan Wang, Di Chen and Guozhen Shen
DOI: 10.1039/C3NR02300A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale article in Chemistry World: Seawater-driven micromachines

Seawater can be used as fuel to propel micromotors say scientists in the US. This finding eliminates the need for external fuels by enabling the micromotors to harvest energy from their surrounding environment.

Joseph Wang and his colleagues from the University of California, San Diego, have designed micromotors that consist of biodegradable and environmentally friendly magnesium microparticles and a nickel–gold bilayer patch for magnetic guidance and surface modification. Typically, ‘other catalytic microscale motors rely upon hydrogen peroxide as an external fuel source, but this requirement impedes many important applications for such tiny motors,’ explains Wang. Instead, these micromotors are fuelled by seawater and rely on the hydrogen bubble thrust generated from the magnesium–water reaction. ‘They [the micromotors] display efficient and prolonged propulsion in chloride-rich environments, like seawater, owing to the chloride pitting corrosion processes. The presence of the gold bilayer also enhances the magnesium–water reaction and leads to efficient motion in seawater,’ says Wang.

Read the full article by Emma Shiells in Chemistry World! 

Read the article in Nanoscale:

Seawater-driven magnesium based Janus micromotors for environmental remediation
W Gao et al.
Nanoscale, 2013,5, 4696-4700
DOI: 10.1039/C3NR01458D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale article in Chemistry World: Manipulating liquid metal marbles

Sequential snaptshots of a liquid metal marble in motion when a voltage is applied

Researchers in Australia and Germany have made highly controllable actuators in the form of liquid metal marbles. The marbles have a nanoparticle coating that can be electrochemically manipulated to control their movement.

Actuation involves converting an input signal into motion to drive a mechanism or system. Micro- and nano-scale actuators are crucial components in consumer electronics, amongst other things.

Now, Shi-Yang Tang, under the supervision of Kourosh Kalantar-Zadeh and Arnan Mitchell, at RMIT University, Melbourne, has demonstrated that liquid metal marbles can act as actuators in aqueous media when an electrical current is applied. The marbles consist of a galinstan (an alloy of gallium, indium and tin) core that has been coated with tungsten oxide nanoparticles. An applied current causes the nanoparticles to migrate along the surface of the galinstan, creating an asymmetry in the surface tension that makes the marbles move.

Read the full article by Yuandi Li in Chemistry World! 

Read the article in Nanoscale:

Electrochemically Induced Actuation of Liquid Metal Marbles
Shiyang Tang,   Vijay Sivan,   Khashayar Khoshmanesh,   Anthony Peter O’Mullane,   Xinke Tang,   Berrak Gol,   Nicky Eshtiaghi,   Felix Lieder,   Phred Petersen,   Arnan Mitchell and   Kourosh Kalantar-Zadeh  
Nanoscale, 2013, Accepted Manuscript
DOI: 10.1039/C3NR00185G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale article in Chemistry World: Origami electronics

Lighting of an LED via folded paper printed with silver nanowire inks

We normally think of electronic components as being inflexible but researchers in Japan are challenging this concept by reinventing paper. And they’ve used their paper electronics to create origami-style lights.

Antennas transmit and receive information and although they have been put on paper before, none of these antennas have been foldable. This is because the conductive materials struggle to stay on the coarse and porous surface of the paper, resulting in deterioration of their electronic properties. Now, Masaya Nogi and co-workers at Osaka University, have combined smooth paper, made from mechanically nanofibrillated cellulose nanofibres, and silver nanowire inks to make foldable antennas. To demonstrate the effectiveness of the antennas the team folded the printed nanopaper into origami cranes and showed they could be used in the illumination of a light emitting diode. 

Read the full article in Chemistry World! 

Read the article in Nanoscale:

Foldable nanopaper antennas for origami electronics
Masaya Nogi, Natsuki Komoda,Kanji Otsuka and Katsuaki Suganuma  
Nanoscale, 2013,5, 4395-4399
DOI: 10.1039/C3NR00231D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale article in Chemistry World: Inorganic nanosheet to enhance batteries

© Shutterstock

A graphene inspired electrode material that could help batteries hold more power has been developed by Chinese scientists. The large surface area of these cobalt oxide nanosheets is key to their electrochemical performance.

Batteries are a cornerstone of modern life with most smartphones and laptops using rechargeable lithium ion batteries. As technology advances, the search is on for batteries that can pack more energy into the same space.    

Graphitic electrodes are commonly used in lithium ion batteries but suffer from low theoretical capacity. A viable alternative is to use metal oxides which have significantly higher theoretical capacities but in practice are limited by their inability to hold more lithium ions. Recently nanostructures have been developed that can hold more lithium ions but the swelling and shrinking from charge–discharge cycles damages the electrode and greatly reduces its capacity, a problem known as pulverisation.

Read the full article in Chemistry World!

Read the article in Nanoscale:

Topochemical Transformation Route to Atomically-thick Co3O4 Nanosheets Realizing Enhanced Lithium Storage Performance
Jinbao Zhu,   Liangfei Bai,   Yongfu Sun,   Xiaodong Zhang,   Qiuyang Li,   Boxiao Cao,   Wensheng Yan and   Yi Xie  
Nanoscale, 2013, Accepted Manuscript
DOI: 10.1039/C3NR01178J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale article in Chemistry World: Biomimetic bricks inspired by mother of pearl

© Shutterstock

Chinese chemists have developed a new nacre-like material which is stronger than natural nacre and most other composites.

Nacre, which is also known as mother of pearl, is a naturally occurring composite formed from calcium carbonate and biopolymers that create a brickwork structure. It is also nearly a thousand times stronger than any of its component parts and a major target for biomimetic synthesis.

Design of the brickwork structure is central to developing nacre-like materials with enhanced properties. Gaoquan Shi, and colleagues, at Tsinghua University, Beijing, began by making a hydrogel from graphene and a silk protein, called fibroin.

Read the article in Nanoscale:

Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels
Liang Huang ,  Chun Li ,  Wenjing Yuan and Gaoquan Shi
DOI: 10.1039/C3NR00196B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoscale article in Chemistry World: Nanopaper light scattering under control

Transparent nanopaper with tailored optical propertiesCollaborators in the US and China have demonstrated that by changing the diameter of cellulose fibres in nanopaper they can tailor its optical properties for use in optoelectronics.

In this work, Zhichao Ruan from Zhejiang University and Liangbing Hu from the University of Maryland have looked at the effect of changing the fibre diameter and packing density in transparent nanopaper. ‘Specular transmittance measures light in the normal direction, whereas diffusive transmittance refers to the forward direction’ explains Hu. ‘As the fibre diameter decreases, the overall transmittance, including both specular and diffusive transmittance, increases. But the difference between the two, which is related to the haze of the nanopaper, starts to decrease.’

Read the full article in Chemistry World!

Read the article in Nanoscale:

Transparent nanopaper with tailored optical properties
Hongli Zhu, Sepideh Parvinian, Colin Preston, Oeyvind Vaaland, Zhichao Ruan and Liangbing Hu
DOI: 10.1039/C3NR00520H

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New method to target malaria: Nanoscale article in Chemistry World

Malaria is a highly infectious and potentially fatal mosquito-borne disease. It affects millions of people each year; however, no effective vaccines exist. Now, scientists from Spain have discovered a new strategy to target the disease.

Plasmodium falciparum, the most deadly species of malaria parasite, infects red blood cells (RBCs) and changes their structure. The infected RBCs then bind to the walls of blood vessels in tissues, such as the brain and lungs, through a phenomenon known as sequestration. This allows the malaria parasites to replicate. Infected RBCs can also bind to non-infected RBCs, forming clumps known as rosettes, which narrows the blood vessels and can be fatal. The formation of rosettes is thought to be mediated by a protein called PfEMP1, which is expressed at the surface of infected RBCs. So, disrupting the activity of this protein could help prevent rosette formation and the onset of severe malaria.

Red blood cells infected with the malaria parasite can clump together and cause deadly blockages © Shutterstock

Interested to know more? Read the full article in Chemistry World here…

Read the article from Nanoscale:

Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

Juan José Valle-Delgado ,  Patricia Urbán and Xavier Fernàndez-Busquets
Nanoscale, 2013, Advance Article
DOI: 10.1039/C2NR32821F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bactericides reach new depths: Nanoscale article in Chemistry World

P. aeruginosa: (A) without treatment; treated with (B) bismuth nanoparticles; (C) x-rays; (D) x-rays and bismuth nanoparticles

Scientists in the US and China have come up with a low-risk treatment for bacterial infections in a deep wound.

Treating infections has long been a challenge for healthcare professionals, and infections caused by drug resistant bacteria have made this task even more difficult to manage. Recently, the genome of an MRSA (methicillin-resistant Staphylococcus aureus) outbreak in a hospital was sequenced to identify the source of infection, track its spread and avoid an outbreak.1 Such extreme measures of tracing infection need an equally tough bactericide. X-ray irradiation is known to have bactericidal properties; however, the high doses needed and the associated risks have restricted its use in vivo.

Interested to know more? Read the full article in Chemistry World here…

Read the article from Nanoscale:

Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria
Yang Luo,  Mainul Hossain,  Chaoming Wang,  Yong Qiao,  Jincui An,  Liyuan Ma and Ming Su
Nanoscale, 2012, Accepted Manuscript
DOI: 10.1039/C2NR33154C

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)