Archive for the ‘Emerging Investigator’ Category

Emerging Investigator Series: Mohamed Ateia Ibrahim

Dr. Mohamed (Moha) Ateia Ibrahim is a Group Leader and Environmental Engineer at the US EPA. Moha is an expert in the areas of emerging contaminants and the assessment of various separation and destruction technologies from lab-scale to Superfund sites. Inspired by the realization that conventional water treatment techniques will not be able to treat these problems, Moha have devoted himself to developing practical remediation solutions that draw on his expertise in engineering and chemistry. He focused on the assessment of conventional methods, the development of new materials and/or composites to adsorb/degrade micropollutants, and the mobility of new classes of contaminants in the environment (e.g., microplastics). He has initiated and led over a dozen of research collaborations with researchers across the world to target micropollutants in a practical way.

Read Mohamed’s Emerging Investigator Series article “Microplastics Sources, Fate, Toxicity, Detection, and Interactions with Micropollutants in Aquatic Ecosystems – A Review of Reviews” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Microplastics Sources, Fate, Toxicity, Detection, and Interactions with Micropollutants in Aquatic Ecosystems – A Review of Reviews. How has your research evolved from your first article to this most recent article?

Recent progress in analytical chemistry has made it possible to detect a growing number of emerging contaminants (ECs) in natural and engineered water environments. Inspired by the realization that conventional water treatment techniques will not be able to treat these problems, I have devoted myself to developing practical remediation solutions that draw on my expertise in  engineering and chemistry. Specifically, I have focused on the assessment of conventional methods (e.g., GAC, IX resins), the development of new materials and/or composites to adsorb/degrade ECs (e.g., PFAS, DBPs, PPCPs, illicit drugs), and the mobility of new classes of contaminants in the environment (e.g., microplastics). I have a multidisciplinary research background with hands-on experience in environmental engineering, materials chemistry, and agricultural engineering. I believe that solving global environmental challenges will require diverse expertise. Towards this end, I have initiated and led over a dozen research collaborations with researchers across the world to target ECs in a practical way.

What aspect of your work are you most excited about at the moment?

The most exciting and motivating aspect about my work is the positive impact on human health by contributing in protecting and treating water sources.

In your opinion, what are the most important questions to be asked/answered in this field of research? & 4. What do you find most challenging about your research?

The field of “emerging” contaminants is always challenged by the lack of information about detection methods and their sensitivities as well as comprehensive toxicological assessments. Once we can detect a contaminant and verify its toxicity, then we need to find its fate in a water/wastewater treatment plant and find novel solutions for the persistent contaminants. However, the magnitude of the problem is huge because the estimated number of chemicals and chemical mixtures is more than 350,000. Therefore, in addition to the experimental challenges/questions above, modeling efforts are needed more than ever before to deal with such large and branched problems.

In which upcoming conferences or events may our readers meet you?

I will be attending multiple meetings in March including ACS Spring Meeting and Water Environment Federation Summit.

How do you spend your spare time?

Before the pandemic, I used to travel a lot. Now, I like cooking and watching movies and documentaries.

Which profession would you choose if you were not a scientist?

I would work for an NGO.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Establishing a strong network of connections is a key factor for success and it should start at the stage of graduate school. This network should include mentors and collaborators who give guidance and support. In addition, the network of early career scientists has a bridge with junior students and researchers as a way of training and knowledge transfer.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Jennifer Apell

Jennifer Apell is an Assistant Professor of Environmental Engineering in the Department of Civil and Urban Engineering at NYU. She earned her PhD in Environmental Chemistry from MIT in 2017 and completed her postdoctoral research at ETH Zurich in the Department of Environmental Systems Science. Her research focuses on the environmental fate of manmade organic pollutants, specifically characterizing the mechanisms that control the equilibrium and kinetics of partitioning between environmental media and on light-driven degradation pathways.

Read Jennifer Apell’s Emerging Investigator Series article “quantifying the impact of cloud cover on solar irradiance and environmental photodegradation” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on Quantifying the Impact of Cloud Cover on Solar Irradiance and Environmental Photodegradation. How has your research evolved from your first article to this most recent article?

If you put this article next to the very first one I published during my master’s degree, you would probably be surprised they were from the same person. My first research was in water treatment engineering and focused on bench-scale testing of an ion exchange treatment processes for a small utility in Florida. This article uses machine learning models and publicly available data from the National Renewable Energy Laboratory (NREL).

Make no mistake, I am still an experimentalist, but the COVID-19 pandemic required a lot of adaptation from early career faculty. There was some precedent for this work as it builds off some of my postdoctoral research on modeling clear sky irradiance spectra to quantify “best-case scenario” photodegradation rates. This new research tries to make those values more realistic by considering the effects of clouds. With the messiness of real world data, machine learning models proved to be a powerful tool to find overall trends hidden within tens of thousands of data points.

What aspect of your work are you most excited about at the moment?


Learning some data science approaches during the lockdown was fun. However, many of these approaches are most useful for large datasets, which are pretty rare for the research I normally work on. I’m now looking forward to learning how advances in data science can be applied to analyze the sparse data sets that are typical when investigating the environmental fate of manmade chemicals.

I have also been focusing on having environmental justice concerns and community engagement guide and inform the research questions I address. New York City might be one of the best places for this. It is a new area for me, and the interest and engagement from the community that I have experienced so far is truly inspiring.

 

In your opinion, what are the most important questions to be asked/answered in this field of research?


That is a difficult question; there are so many questions that still need to be answered about pressing environmental concerns. Instead I would suggest that in our attempts to answer these questions, we give extra consideration to understanding the mechanisms—the ‘why?’—of the process. There are just too many chemicals and too many human-impacted environments for us to be investigating them on a case-by-case basis. Although our research may be focusing on a single pollutant or a single location, we should always try to put our results in a broader context so that the insights gained from our efforts can be translated to other situations.

 

What do you find most challenging about your research?


There are still so many things we don’t know about environmental processes and the impact that humans have on different environments. I’ve struggled with focusing on just a few research questions now that I have the freedom of a principal investigator. I find so much of the research in the field to be very exciting and important. I have a sign in my office that reminds me to stay focused on my currently chosen research questions.

 

In which upcoming conferences or events may our readers meet you?


I am co-organizing the Aquatic Photochemistry session at ACS this spring in San Diego. It looks like it is going to be amazing – so many good talks! I will unfortunately have to attend virtually. I’m also hoping to make it to AEESP and the Gordon Research Conference on Environmental Sciences: Water during the summer.


How do you spend your spare time?


My dog, Lumen, and I spend some time in the dog park, and I try to keep plants alive with varying success. I like to take the extra time to walk to places to get to know the neighborhood. I occasionally volunteer as a participant in other people’s research. I’ve been doing this since graduate school. Social science studies are particularly interesting because the research questions have always been hush-hush, so the tasks seem very random sometimes.


Which profession would you choose if you were not a scientist?

Well I was a practicing engineer for a while before returning to school for a PhD. But let’s say if I weren’t any kind of scientist or engineer, I think I would want to be a detective. The use of reasoning and the long time required for something to be concluded seems like it would be similar between the two professions.


Can you share one piece of career-related advice or wisdom with other early career scientists?

Work on research questions that excite you. Equipment failure and inconclusive results are generally unavoidable, and being excited to answer the question can help get you through those hard times to the much happier times of contributing new data and knowledge to the field.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Gregory LeFevre

Greg LeFevre is an assistant professor of environmental engineering and science in the Department of Civil & Environmental Engineering and IIHR—Hydroscience & Engineering at the University of Iowa where he started in 2016. He did his BS at Michigan Tech, MS and PhD at University of Minnesota, and Postdoc at Stanford University all in environmental engineering. The LeFevreLab focuses on elucidating biotransformation products and pathways of emerging organic contaminants with the goal of informing improved design of ‘engineered-natural’ treatment systems for non-point pollutants, like urban stormwater and agricultural drainage, and transform wastes into resources, protecting people and ecosystems. Greg has received multiple sources of recognition for his work, including the National Science Foundation CAREER Award, the University of Iowa Early Career Scholar of the Year award, the American Chemical Society Editor’s Choice award and ACS Best Paper award, the Royal Society of Chemistry Environmental Sciences ‘Best Paper’ and multiple ‘HOT’ articles, National Academy of Engineering Frontiers of Engineering fellow, the AEESP Best Dissertation, amongst others.

Read Gregory LeFevre’s Emerging Investigator Series article “municipal wastewater as a year-round point source of neonicotinoid insecticides that persist in an effluent-dominated stream” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Municipal Wastewater as a Year-Round Point Source of Neonicotinoid Insecticides that Persist in an Effluent-Dominated Stream. How has your research evolved from your first article to this most recent article? 

In some ways, my work has changed greatly through time, and in others it is very consistent. I did my PhD at the University of Minnesota focused on the fate and biotransformation of organic contaminants from stormwater in bioretention cells, and my postdoc was at Stanford focused on emerging contaminants in stormwater as well as plant metabolism of emerging contaminants during water recycling. Since starting at University of Iowa as a faculty member, we’ve been continuing in these areas and are also very interested in the fate and transformation of so-called ‘target-specific’ pesticides like the neonicotinoids. These compounds are so interesting and important because, although the parent compounds are explicitly designed to be less toxic to many non-target organisms, only very slight alterations to the chemical structure can dramatically alter the toxicity, reactivity, and fate of the transformation products.

What aspect of your work are you most excited about at the moment?

I am really interested in how complex chemical exposure mixtures occur and change in the environment and could lead to unanticipated effects to biota. Complex mixtures are important because of the potential for interactive effects on organisms (e.g., drug-drug interactions); when mixtures change in space and time, so can the risk profile. New collaborative work that we’ve been doing at the field study site featured in this paper has been probing some of the spatiotemporal drivers of complex mixture evolution, as well risk patterns. Mixtures are how chemicals occur in the real environment.

In your opinion, what are the most important questions to be asked/answered in this field of research?

I believe that we are standing at the verge of multiple big-data “omics” revolutions, with a huge opportunity to converge high res mass spec with biological applications (transcriptomics, genomics) to link chemical exposures with effects to biota—which is ultimately why we care. This will be critical to being able to evaluate complex chemical mixture effects on organisms, which is very much a grant challenge—and difficult.

What do you find most challenging about your research?

I think that there is always a push-pull struggle between working at the interface between the fundamental but realistic and the more applied but less controlled. Navigating that is always a challenge, and I think that it’s important to be able to—and for journals to value—work across that spectrum. Field studies can be more ‘messy’, but are so important!

In which upcoming conferences or events may our readers meet you?

I usually am at ACS once a year, often at SETAC, AEESP, EmCon, and Gordon Env Sci Water. Of course, during the pandemic, that has been really disrupted.

How do you spend your spare time?

I have two little kids (4 and 2 years old), so not much spare time, but I like to do outdoors activities as much as possible. Fortunately, my girls love fishing (at least when we are catching fish), catching bugs, and exploring in the woods. A new creek is an all-day itinerary.

Which profession would you choose if you were not a scientist?

I honestly never really considered doing something that was not “a scientist” at least of some sort. My dad’s influence was really big on me; he was a woodworker by trade and taught me angles, planning, and precession—but his passion (and now retirement occupation) has always been ecological restoration. He took me with him to weekly volunteer workdays since I was four, and all of my jobs, internships, and education have been around the environmental sciences.

Can you share one piece of career-related advice or wisdom with other early career scientists?

This might be both the worse and best advice to early career researchers during the pandemic: Make friends before you need them. By that, I mean reach out to folks across your university who might be of potential connection or collaboration before you ask them for something or want them to join on a collaboration or proposal. The first year I was at UIowa, I met with someone new every or every other week, from Public Health to Chemistry to Education to Water Resources, etc. and mostly listened, but also got to share a little of what I do and my interests. Totally pull the ‘new person’ card, people will give you an hour. It totally makes coming back to people later with an idea less awkward, and some have resulted in great collaborations—and it’s much better than people only coming together to rally around a proposal (assuming they even know who you are). Getting to know folks is even more important during COVID, but harder.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Li Li

Li Li is an Assistant Professor leading the Health & Environment Assessment Team (HEAT) at the University of Nevada, Reno since 2019. He obtained his BSc and PhD degrees from Nankai University in 2012 and Peking University in 2017, respectively, and received postdoctoral training at the University of Toronto Scarborough between 2017 and 2019. His research seeks to understand the accumulation, transport, transformation of synthetic chemicals (e.g., flame retardants, plasticizers, pesticides, and surfactants) and materials (e.g., nanomaterials and microplastics) in a nexus comprising the human socioeconomic system, environment, and food webs, as well as the resulting adverse environmental and health effects. He strives to establish, foster, maintain, and promote a variety of mechanistically sound and computationally effective models, to advance our thinking and understanding of the behavior and processes of synthetic chemicals and materials and meanwhile to inform decision making.

Read Li Li’s Emerging Investigator Series article “the role of chemical properties in human exposure to environmental chemicals” and read more about her in the interview below:

Your recent Emerging Investigator Series paper reviewing the role of chemical properties in human exposure to environmental chemicals. How has your research evolved from your first article to this most recent article?

I research various chemical substances manufactured and commercialized by humans and but found to be hazardous to humans and other organisms. For the past years, I have been striving to develop a holistic, mechanistic modeling framework to describe the complete continuum from the production of these chemical substances to their occurrence within the human body. This modeling framework integrates various components such as production, environmental releases, environmental concentrations, exposure, and risks. It allows exploring how human exposure to chemical substances responds to industrial and consumption activities, physicochemical properties of chemicals, features of the environment of interest, and human behavior. I first managed to bridge chemical production, environmental releases throughout the lifecycle, and multimedia environmental concentrations through my doctoral work (compiled as a book entitled “Modeling the Fate of Chemicals in Products” published by Springer). This work was then expanded, during my post-doctoral training, to include the exposure of humans and various ecological receptors, leading to the birth of a comprehensive exposure model named “PROduction-To-EXposure (PROTEX)”. During the most recent year, I continued to extend the chain of models to include toxicity and health outcomes to support assessments of health risks and impacts. This ambitious modeling framework now enables scientists, industrial users, and policymakers to predict what would happen to our environment and health if we decide to manufacture a certain amount of a certain chemical substance; it also allows linking the adverse environmental and health impacts at the current moment back to the regrettable decisions decades ago.

What aspect of your work are you most excited about at the moment?

The interdisciplinarity of my work is the most fascinating. The quantitative characterization of the continuum from chemical production to environmental and health impacts, requires synergistic leveraging of the knowledge and successful experience in environmental chemistry, exposure and health sciences, and industrial ecology. We need systematic understandings of how chemicals move, change, and accumulate in the human socioeconomic system, the physical environment, and the bodies of humans and other organisms. An example is this Emerging Investigators article, which discusses how properties of partitioning, dissociation, reaction, and mass transfer (concepts in environmental chemistry) govern and impact external and internal exposure to various chemical substances (concepts in exposure science). Both environmental chemists and exposure scientists can benefit from reading this paper. I am proud that I am one of the pioneers seeking to fuse these independent research areas and make them interdependent and interconnected.

In your opinion, what are the most important questions to be asked/answered in this field of research?

I think the most important question is to understand how human activities (manufacturing and consumption of chemical substances, behaviors related to chemical intake, measures for mitigating health risks or impacts, etc.) and chemical properties (tonnage, partitioning, reaction, dissociation, mass transfer, etc.) interactively determine human exposure to chemicals and associated health outcomes. Especially, we need a better understanding and characterization of how variabilities in these two aspects (e.g., interindividual variabilities in toxicokinetics, behavior, and toxicological susceptibility, as well as inter-chemical variabilities in partition ratios, half-lives, and mass transfer coefficients) shape the varied human exposure and health outcomes.

Such a systematic understanding is of vital importance because we are exposed to a myriad of chemical substances present in the multimedia environment, released from multiple lifecycle sources, through multiple exposure routes – it is close to impossible to investigate every single chemical case by case. And we also need to identify the most vulnerable and susceptible subgroups of people with disproportionate chemical exposure if we want to protect every single person in our community for environmental justice and fairness.

What do you find most challenging about your research?

The interdisciplinarity also brings about challenges. There has long been a lack of communication and dialog between scientists from these different disciplines. Knowledge and experience are largely compartmentalized and fragmented. For instance, while environmental releases “remain the least understood part of the research” to environmental chemists, industrial ecologists already have a wide range of well-established, mature methodologies on hand for estimating the lifecycle releases of chemical substances. However, since data of environmental releases are not directly measurable or observable, they cannot be evaluated or validated without being converted to concentrations in environmental compartments, which often plagues industrial ecologists due to the lack of fate and transport modeling techniques in industrial ecology. In addition, a common language or knowledge is also missing in many cases. An example is the biotransformation of chemical substances inside the organism body: while its important role in determining bioaccumulation and human dietary ingestion of chemical substances has been very well recognized and characterized by environmental chemists, as reviewed in this Emerging Investigators article, it has yet to be widely accepted by most exposure scientists and/or toxicologists. Also, terminologies and nomenclatures vary among these different disciplines, which adds difficulties to communication and dialog between these research areas. For example, just ask ourselves: what are we talking about when saying “bioavailability”? When using this word, are we really referring to the same thing as an environmental chemist, a toxicologist, an exposure scientist, or a pharmaceutical scientist does?

In which upcoming conferences or events may our readers meet you?

I usually attend the annual meetings of the Society of Environmental Toxicology and Chemistry in North America and Europe. I am also a frequent attendee of the annual meetings of the International Society of Exposure Science.

How do you spend your spare time?

I spend my spare time with my wife, hanging out, watching films and variety shows, and exploring various food and fun. I am also a nice photographer!

Which profession would you choose if you were not a scientist?

I may choose to become a journalist, as I love to investigate the truths beneath the surface and share intriguing stories with others. To me, a scientist is quite similar to a journalist, as they both relay something unknown to the audience through their efforts of exploration.

Can you share one piece of career-related advice or wisdom with other early-career scientists?

It is important to understand both the big picture of the research area and the detailed, fundamental technical skills (e.g., laboratory, modeling, fieldwork, observational methodologies) required in the research area. Vision is crucial to success, but bringing vision into reality is more important. After all, “talk is cheap, show me the data”.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Rachel O’Brien

Rachel received her Ph.D. from UC Berkeley in Allen Goldstein’s group and then carried out two postdocs, one at Lawrence Berkeley National Lab and the other at MIT. She started a faculty position in the Chemistry department at William & Mary in 2017 where she is now entering her fifth year. Her research focuses on complex organic mixtures found in aerosol particles and on indoor and outdoor surfaces. With a team of undergraduates and masters’ students, she probes details on the chemical composition and investigates how the mixtures change as they age under natural conditions. Collaborations are a key component of her research, and she is so happy to have had the opportunity to take part in the HOMEChem field campaign to investigate questions in indoor chemistry.

Read Rachel O’Brien’s Emerging Investigator Series article “Chemical and Physical Properties of Organic Mixtures on Indoor Surfaces During HOMEChem” and read more about her in the interview below:

Your recent EmergingInvestigator Series paper focuses on Chemical and Physical Properties of Organic Mixtures on Indoor Surfaces During HOMEChem. How has your research evolved from your first article to this most recent article? 

During my PhD, I explored the chemical composition of aerosol particles using soft ionization and ultra-high resolution mass spectrometry. In my first postdoc I worked on imaging individual aerosol particles using microspectroscopic techniques. During my second postdoc, I helped develop a method to atomize very small sample volumes into an Aerosol Mass Spectrometer. This most recent article is built on all these research skill sets. To fully understand the chemical composition and physical properties of complex mixtures like the ones we look at here, you need a range of different techniques. I’m so fortunate to have had the opportunity to combine my group’s main skill set (chemical analysis) with work from our collaborators to build a full picture of the chemical and physical properties of these indoor films.

What aspect of your work are you most excited about at the moment?

I’m really excited about the aging work that we are doing for complex organic mixtures from biomass burning, secondary organic aerosol, and indoor surface films. Our ability to track chemical changes over longer periods of time is providing some really interesting data sets.

In your opinion, what are the most important questions to be asked/answered in this field of research?

In indoor chemistry I think we really need to understand the chemical mixtures we have both in the surface films, but also in the air. In addition to that, we need to understand the variability that is present since no two houses or workplaces will be the same. With the Pandemic, many of us are spending more time indoors and this begs the questions: what are we breathing and what are we exposed to in these environments? Once we understand all this, we can better design aspects of the built environment, like ventilation and building materials, to improve our health and the quality of our daily life.

What do you find most challenging about your research?

The data sets we generate are complicated and can take long periods of time to analyze. As a pre-tenure faculty member, the slower pace for this can be a bit stressful. But the time we spend pays off in the detailed information we can generate.

In which upcoming conferences or events may our readers meet you?

I will be at AAAR this fall, and I’ll be attending AGU remotely.

How do you spend your spare time?

I don’t find that I have a lot of spare time, but what I do have I spend with my husband Jeremy.  I hope to get back into swimming again once things open back up after the Pandemic.

Which profession would you choose if you were not a scientist?

If I weren’t a scientist, I would want to run a ranch focusing on beekeeping with lots of fields of different native flowers combined with wine fields.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Find good people to work with: people who both encourage you and provide good feedback. Science is a great field to work in when you have a community of fantastic collaborators and mentors to share your journey.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Garrett McKay

Dr. Garrett McKay joined the Zachary Department of Civil & Environmental Engineering at Texas A&M University in September 2019 as an assistant professor. Dr. McKay’s research focuses on the fundamental chemistry occurring in natural and engineered systems, including aquatic photochemistry, dissolved organic matter characterization, and treatment of emerging contaminants.  After graduating with his BA and MS in chemistry at California State University Long Beach, Dr. McKay completed a PhD in Environmental Engineering in 2017 at CU Boulder. Dr. McKay is looking forward to contributing to the growing Environmental Engineering program at A&M by sharing his passion for chemistry with undergraduate and graduate students through his teaching and research.

Read Garrett McKay’s Emerging Investigator Series article “Critical review of photophysical models for the optical and photochemical properties of dissolved organic matter” and read more about his in the interview below:

Your recent Emerging Investigator Series paper focuses on a Critical review of photophysical models for the optical and photochemical properties of dissolved organic matter. How has your research evolved from your first article to this most recent article?

During my PhD, my research mostly focused on the formation of reactive oxidants during light absorption by organic matter, which is one way that organic matter dissipates the energy of absorbed photons.  As our studies progressed in this area, they revealed that there was a need to investigate how it is that organic matter absorbs and emits light in the first place. 

What aspect of your work are you most excited about at the moment?

We have just started synthesizing some quinone-hydroquinone complexes to test whether these model systems exhibit optical properties similar to dissolved organic matter.  We are looking forward to getting back in the lab, when it is safe to do so due to SARS-CoV-2, and performing some reactions on these complexes.

In your opinion, what are the most important questions to be asked/answered in this field of research?

The three-dimensional structure of organic matter is really important for a lot of processes, not just light absorption and photochemistry, such as pollutant sorption.  Knowing more specific details about organic matter’s three-dimensional structure (e.g., hydrophobic surface area, whether the structure is static or dynamic) will help address some of the knowledge gaps identified in this review.

What do you find most challenging about your research?

The biggest challenge is the complexity of dissolved organic matter, which really hinders obtaining a molecule-by-molecule understanding of the material.  Fortunately, this complexity is also fascinating to me.

In which upcoming conferences or events may our readers meet you?

The International Humic Substances Society biennial conference is scheduled for August in Estes Park, CO in August, which I am planning to attend.  I am usually at the spring ACS meeting each year to participate in the Aquatic Photochemistry session in the Division of Environmental Chemistry.

How do you spend your spare time?

I enjoy spending time with my wife and playing with our 10 month old son. When I have spare time I try to get out for a run or round of golf.

Which profession would you choose if you were not a scientist?

Potentially an attorney.  I think I would like the analytical nature of their work.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Invest the time to develop a fundamental understanding of what you are studying, whether it is a new experimental or analytical technique, fundamental concept, or data analysis tool.  With the pressure of getting research “done,” it can be tempting to gloss over details.  Taking the time dig deeper is beneficial in the long-run.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Marlene Ågerstrand

Marlene Ågerstrand is an Assistant Professor at the Department of Environmental Science (ACES) at Stockholm University. She received a PhD from the Royal Institute of Technology in Stockholm in 2012, and did a post doc at Stockholm University 2012-2016. Her research concerns regulatory (eco)toxicology, with a focus on the assessment and management of chemicals. Aspects of interests include the use of expert judgment and science in hazard and risk assessments. The aim of her work is to improve the understanding of the decision-making process in chemicals regulation.

Read Marlene Ågerstrand’s Emerging Investigator Series article “Use of behavioural endpoints in regulation of chemicals” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on use of behavioural studies in chemicals regulation. How has your research evolved from your first article to this most recent article?

I started my career evaluating the importance of voluntary environmental initiatives from the pharmaceutical industry, and then moved on to evaluating chemicals regulation. Through various collaborations throughout my career I have had the opportunity to broaden my knowledge and research field. Currently, I look forward to continue the collaboration with the group of ecologists and ecotoxicologists I meet when writing this paper on the use of behavioural studies in chemicals regulation. It has been extremely rewarding to be introduced into this research field. It is such a privilege to have a work that constantly offers the opportunities to learn new stuff, and animal behaviour is such a fascinating field.

What aspect of your work are you most excited about at the moment?

I have two PhD-students that are starting just now and I look forward to working with them. They both have valuable experiences from experimental work and human health assessments that I think will benefit our joint projects. We will continue evaluating the European chemicals regulation, focusing for example on the REACH regulation. When doing my PhD I had a really supportive supervisor and I look forward to developing my tutor skills.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Research on regulation of chemicals has largely focused on how science is used in decision-making but we also know that other factors, like value judgements and economic considerations, can influence how decisions are made. To fully address and understand the complexity of decision-making natural science researchers need to collaborate with social science researchers. I look forward to doing that.

What do you find most challenging about your research?

Since my research to a large extent is based on literature studies, lack of transparency in the regulatory system is a limiting factor. One of my overarching research goal is to understand how science is used, or not used, in decision-making. If hazard and risk assessments (i.e the basis of chemicals management) and the underlying studies are not publicly available it limits the possibilities to perform the research. But I sense that change is coming. Everywhere in society we see demands for increased transparency, and also in this field.

In which upcoming conferences or events may our readers meet you?

I usually attend the SETAC Europe meeting but I will unfortunately not go to the meeting in Dublin. I am trying to reduce my CO2-emissions so flying is not an option at the moment. I have travelled by train to several meetings in Europe and it works surprisingly good so I will stick to that for a while. It helps to have a department that supports environmental friendly choices, e.g. by paying the difference between the flight ticket and the train ticket.

How do you spend your spare time?

With family and friends, preferably doing outdoor activities. Climbing, orienteering, mountain biking, cross-country skiing and skating are preferred sports. Eating Vietnamese food is also prioritized. I have always prioritized my spare time (and sleeping) and I think that has been important for my health and thereby my continued career in academia.

Which profession would you choose if you were not a scientist?

I need to feel strongly motivated to do a good job, so if I worked outside academia it would have to be something within sustainable development. We only have one planet.

Can you share one piece of career-related advice or wisdom with other early career scientists?

The best thing I did in my early career was to start networking. It has opened so many doors and resulted in interesting and rewarding research collaborations. I also think it has contributed to making my research more relevant for stakeholders, and thereby increased the societal impact of my work. I started by attending meetings, emailing people I wanted to get to know, and organising sessions and other events. This is time-consuming in the beginning but after a while it gets self-generating and you can enjoy the fruits of your labour.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Adrien Mestrot

Adrien Mestrot is Assistant Professor Tenure-Track for Soil Science at the Institute of Geography of the University of Bern (Switzerland). He graduated from the Université de Pau et des Pays de l’Adour (UPPA, France) and obtained his Ph.D. from the University of Aberdeen (UK) in 2011. He then worked with the Soil Science Group at the University of Bern where he received a Marie Curie IEF Fellowship in 2013 and a SNSF Professorship in 2016.

Read Adrien Mestrot’s Emerging Investigator Series article “Mercury mobility and methylmercury formation in a contaminated agricultural flood plain: Influence of flooding and manure addition” and read more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on Mercury mobility and methylmercury formation in a contaminated agricultural flood plain: Influence of flooding and manure addition. How has your research evolved from your first article to this most recent article?

During my PhD at the University of Aberdeen, I studied the biovolatilisation of arsenic from soil and my first paper described a new method to trap, identify and quantify volatile arsenic species. Biovolatilisation and biomethylation of arsenic are intrinsically linked and these two mechanisms are still not well understood. Having gained knowledge on speciation analysis and arsenic transformations in soils, I set out to explore the fate of other trace elements that are redox sensitive and undergo biomethylation and biovolatilisation in soils. I was particularly interested in antimony and mercury. I continued with this line of research as a Marie Sklodowska Curie fellow at the Institute of Geography of the University of Bern, where I could take full advantage of the state-of-the-art laboratory. During this time, I modified, developed and validated extraction and analytical techniques to measure volatile and dissolved forms of these three toxic elements in soils, soil solution and the atmosphere. After the fellowship, I obtained a SNSF Professorship and I more recently became Assistant Professor tenure-track for Soil Science – all in the same institute. I am now able to use these extraction and analysis techniques to understand the drivers behind the formation of these chemical species, while focusing on the effect of climate change (flooding, temperature) and agricultural practices (manure amendments) on the release, biomethylation and biovolatilisation of mercury, antimony and arsenic in soils.

What aspect of your work are you most excited about at the moment?

What currently excites me a lot as a new faculty member is the opportunities that are given to me to talk about the research conducted in my group. I assume people hear that a new person has been appointed and are curious to know more. During the last couple of years I have received several invitations to give talks in other research groups and Federal Offices in Switzerland. This is a great chance for me to tell the bigger story behind the various current projects and provides opportunities for building a diverse professional network in Switzerland.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Generally, soils are seen as sinks for trace elements since these can bind to different soil components such as e.g. iron and manganese (oxy-)hydroxides, clays or organic matter. However, when flooding occurs, trace elements bound to iron and manganese (oxy-)hydroxides are released through a mechanism called reductive dissolution. Once released to the soil solution, the trace elements are available to soil organisms and plants and could be transported to groundwater. Microorganisms can also then take-up these elements and transform them to more toxic (e.g. methylmercury), more mobile or even volatile species. Current global climate predictions tell us that extreme weather events with heavy rains and flooding will become more frequent, thus turning soils into a potential source of trace elements. Therefore, for me, the most important question is about the potential influence of climate change on the release and the speciation of trace elements in soils and if it can influence their global biogeochemical cycle.

What do you find most challenging about your research?

In order to understand and characterise the release, biomethylation and biovolatilisation of trace elements in soils, one must have a very broad set of skills. From soil science to advanced analytical chemistry and a sound understanding of microbial processes. However, this means that collaborations are necessary which is always interesting and an opportunity to extend one’s research horizon.

In which upcoming conferences or events may our readers meet you?

I try to attend as few conferences as necessary, both for family reasons (I have a young son) and to reduce my carbon footprint. I tend to favour conferences that are local or can be reached by train although this is not always possible! Every year I attend the Swiss Geoscience Meeting and every two years there is ICOBTE. Of course I try to go to Goldschmidt as often as possible since it is an important conference in my field. This year I will attend ContaSed, which we are organising in Bern, and Eurosoil, which will be taking place in August 2020 in Geneva.

How do you spend your spare time?

I like gardening and DIY. These are activities that allow me to focus for a few hours on an object or task through a well-defined activity with a start and an end, which is very different from our day-to-day work as scientists. I also love hiking, climbing and spending time with my family and friends.

Which profession would you choose if you were not a scientist?

I would choose to be a science journalist, a science communicator or a managing editor for a journal. I don’t think I would enjoy working in a non-science related job.

Can you share one piece of career-related advice or wisdom with other early career scientists?

My advice for early career researchers is to take part in the different commissions of your institution and become a representative for your peers (e.g. PhD or postdoc representative). It will allow you to network with more senior members of your institutions (lecturers, professors etc..) while contributing to shape your place of work and potentially your university and beyond. In my opinion, the most pressing issues to be addressed in research include improving gender equality, work-life balance and sustainability.  I think that early career researchers and newly appointed faculty members have strong leverage to push forward the required changes in academia.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Case van Genuchten

Case van Genuchten received a B.Sc. in 2008 from San Diego State University and a M.Sc. (2009) and Ph.D. (2013) from the Civil and Environmental Engineering Department at the University of California, Berkeley.  Following his Ph.D., Case van Genuchten spent two years as a post-doctoral researcher in the Environmental Geochemistry Laboratory at the University of Lausanne (CH). He then received a prestigious Veni grant for young researchers from the Applied and Engineering Sciences Division of the Dutch Organization for Scientific Research. As part of this grant, he spent three years at Utrecht University in the Netherlands investigating mixed-valent Fe(II,III) (hydr)oxides generated by Fe(0) electrolysis as a decentralized method of arsenic treatment. The major question driving Case van Genuchten’s research involves how nano- and sub-nanoscale processes, including mineral dissolution/precipitation, ion sorption, and electron transfer, govern the transport and bioavailability of major elements (P, Ca, Si) and toxic trace contaminants (As, Pb, Cd).  Specifically, he is interested in applying wet-chemical methods and advanced synchrotron-based characterization techniques to generate fundamental knowledge that can be applied in the design of water and soil remediation strategies, particularly in decentralized, resource-scarce communities. Currently, Case van Genuchten is a researcher in the Geochemistry Department of the Geological Survey of Denmark and Greenland (GEUS).

Read Case van Genuchten’s Emerging Investigator Series article “Interdependency of Green Rust Transformation and the Partitioning and Binding Mode of Arsenic” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on the Interdependency of Green Rust Transformation and the Partitioning and Binding Mode of Arsenic. How has your research evolved from your first article to this most recent article?

From the beginning of my career, I have been interested in designing water treatment technologies particularly for resource-scarce and marginalized communities. My first series of articles focused on developing an electrochemical method of removing arsenic from contaminated groundwater used as a source of drinking water in South Asia, where millions are suffering from arsenic poisoning. This method is based on the electrolytic dissolution of steel electrodes to generate reactive ferric oxides that bind arsenic effectively. In the years since these first publications, we learned that by simply changing the way electric current is applied to steel electrodes (i.e. a lot of current over a short time, rather than a small current over a long time), different phases of iron oxides can form, such as green rust. Green rust is a mixed valent iron oxide that contains both ferrous and ferric iron and has unique redox and sorption reactivity, but can transform rapidly into other types of iron oxides because it is relatively unstable. The Emerging Investigator Series article determines how structural transformations of green rust alter the dissolved arsenic concentration in water – some green rust transformations increase dissolved arsenic, others beneficially decrease it. The ultimate goal of this work, and one of the general themes of my research since my Ph.D., is to gain knowledge to improve arsenic remediation strategies in a variety of environmental and socioeconomic conditions.

What aspect of your work are you most excited about at the moment?

In the last year, I have been spending a lot of time thinking about sustainable methods of managing arsenic-laden waste that is generated as a by product of treating arsenic contamination. This idea is briefly mentioned in the discussion section of the Emerging Investigator Series article in the context of separating arsenic from the green rust for further processing of the material. All arsenic treatment methods produce arsenic-rich waste and currently there is no real sustainable method of managing this material. Currently, the most common disposal strategy for arsenic-rich waste is landfilling, which is economically and environmentally unsustainable. What excites me most about my current and future work is trying to develop a series of chemical, electrochemical, and biological techniques that can recover resources for arsenic-rich waste and enable a circular economy for this carcinogenic material.

In your opinion, what are the most important questions to be asked/answered in this field of research?

One of my primary research interests is in developing appropriate technologies for poor, decentralized communities that lack infrastructure. In this field, one of the most urgent and important questions is how to best design technologies that address technical challenges while fitting within the socioeconomic and cultural constraints of the affected community. In other words, how can we integrate the technical expertise of engineers and practitioners with the cultural and economic understanding of the affected community gained by social scientists, economists, NGOs, and local community leaders to ensure sustained engineered solutions? The ongoing crisis of naturally occurring arsenic contamination of groundwater used for drinking in South and Southeast Asia is a timely example of how solving complex problems that affect marginalized populations requires a multidisciplinary approach. Research in this field, which has been called Development Engineering or Humanitarian Engineering, is beginning to show the importance of coordinating technical solutions with the socioeconomic and cultural characteristics of the end user, but I think this field is still in its infancy and there are many opportunities for new ideas.

What do you find most challenging about your research?

I think the answer to this question relates to the previous one.  Although I will always be excited to apply synchrotron-based X-ray methods to determine the molecular-scale underpinnings of remediation strategies, as is the focus of this article, what I find both challenging and motivating is applying this detailed information to improve real world solutions.  It is not always straightforward to translate results from small-scale experiments in controlled laboratory conditions to practical knowledge that can be used by technology practitioners.  I hope I can get better at this in the future!

In which upcoming conferences or events may our readers meet you?

In 2019, I will be attending the Geochemical Society’s Goldschmidt conference in Barcelona, Spain. In 2020, I will be heading to the ISGSD International Congress on Arsenic in the Environment in Utrecht, the Netherlands and the IWA World Water Congress in Copenhagen, Denmark.

How do you spend your spare time?

I guess I am still kind of a kid when it comes to spare time. I grew up in Southern California and spent a lot of time surfing and snowboarding, but I live in Copenhagen now so it is a bit more difficult to keep this up. Still, I try to go on as many surf and snowboard trips as I can. I also still skateboard a lot and Copenhagen is a great place to keep that up. The other activities I like to do are a bit more standard: hiking, barbecuing, and watching movies and baseball with my partner, Sofie.

Which profession would you choose if you were not a scientist?

Hmmmm… That is tough. I haven’t thought about that since I was a teenager. I guess getting paid to surf would be an amazing life, but maybe doing that as a job would end up making it less fun than doing it as a hobby. I have been hooked on true crime media lately. Perhaps it is the kind of “Hollywood” way that the shows are produced, but the ways in which the detectives solve some of these unbelievable crimes is super interesting and the approach seems to consist of some scientific aspects. So maybe I’d try to be a crime-solving detective?  Except detective van Genuchten doesn’t really have a good ring to it.

Can you share one piece of career-related advice or wisdom with other early career scientists?

I think the advice I would give would differ for the different stages of early career scientist. For someone in a Ph.D. program, I would say it is really important that you are motivated by the project rather than by other external factors. Before I started my Ph.D., I asked myself if I would be happy working in the field of my project for ten years even though the Ph.D. should take less than half that. The reason is that learning to do research is difficult and there are many struggles that all Ph.D. students face. If you are not motivated by the project, it can be easy to lose focus and give up. For someone beginning a post-doc, I would say that it is important to continue to learn and ask questions and to not be afraid to try new things and apply your skills in different environments. I have a lot of good memories of my post-doc at the University of Lausanne (Switzerland) and I think it was due partly to the stronger sense of independence and freedom I had. For someone entering a tenure-track position, I think my advice would be that since you have made it this far already, try to not worry too much about the future and enjoy the present as much as you can.  At any career stage beyond that, I cannot give too much advice because I am not there yet. However, perhaps my kind of sarcastic, tongue-in-cheek advice for more senior scientists would be to not forget what being a Ph.D. student was like.  It is difficult to learn to be a scientist, so try not to be too hard on the students.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Tara Kahan

Tara Kahan in the lab

Tara Kahan obtained a B.Sc. in chemistry from the University of Regina and a PhD in environmental chemistry from the University of Toronto. Following postdoctoral fellowships at the University of California Irvine and the University of Colorado Boulder, Tara joined the chemistry department at Syracuse University as an assistant professor in 2012, and she is now an associate professor and Canada Research Chair in Environmental Analytical Chemistry in the chemistry department at the University of Saskatchewan. Tara investigates poorly-understood reactions that affect environmental and human health, with a focus on two distinct themes: reactions of pollutants in water, snow, and ice; and indoor chemistry.

Read Tara Kahan’s Emerging Investigator Series article “Spatial distribution of dissolved organic matter in ice and at air-ice interfaces” and read more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on microspectroscopy of organic solutes at ice surfaces. How has your research evolved from your first article to this most recent article?

My research group’s first article was published 5 years ago. That paper showed that organic matter can greatly alter pollutant photolysis rates in ice, even if the organic matter doesn’t itself absorb sunlight. That was an exciting paper for me, both because it was my first, and also because it set the stage for a major research direction in my group: Investigating reactivity in “dirty” ice. This current article focuses on the same major theme, but has a very different approach. We’ve recently expanded our repertoire so that in addition to measuring reaction kinetics at ice surfaces we can characterize physical and chemical  properties of ice surfaces using Raman microscopy. I’m very excited to pursue this new research direction, and to use Raman microscopy to better understand heterogeneous atmospheric reactions.

What aspect of your work are you most excited about at the moment?

My favourite part of research is discussing ideas with other people, and especially with group members. So I tend to feel most excited about whatever is currently in front of me. Right now that is Raman microscopy work. (Plus, it’s really exciting to think about all of the research directions that we could pursue with this technique.) But I know that when group members come to me with results in other areas (reaction kinetics in water and ice, indoor chemistry) I will be just as excited about those.

In your opinion, what are the most important questions to be asked/answered in this field of research?

In the area of ice chemistry, I think that a big issue is the difficulty in effectively using fundamental properties (e.g., rate constants, partitioning coefficients) determined from laboratory measurements to improve our understanding of observations made in the field. Part of the issue is that there just aren’t that many laboratory measurements in ice or at ice surfaces (compared to, for example, in liquid water). Another issue is that the atmosphere is very complex and “messy”, and laboratory experiments made under necessarily simplified conditions may yield results that are difficult to translate to the real world. I hope that our research on solute-containing ice will help to bridge this gap. I think that the most important thing is to continue bringing together researchers in different areas (laboratory, modelling, and field observations) to discuss capabilities, needs, and potential synergies and collaborations.

What do you find most challenging about your research?

My biggest challenge isn’t with my research itself, but with navigating the role of “principal investigator”. I have struggled with balancing the many demands on my time (teaching, service, grant-writing, the administrative duties of running a lab, advising group members) that I did not have as a graduate student or postdoctoral researcher. Over the years I have gotten better at carving out time to focus exclusively on research, but it never feels like enough.

In which upcoming conferences or events may our readers meet you?

I will be presenting at the 2019 American Chemical Society (ACS) Fall Meeting in August and at the Society for Environmental Toxicology and Chemistry (SETAC) meeting in November.

How do you spend your spare time?

Wrangling my toddler, mostly. That aside, we love being outside, and try to take advantage of the many wonderful parks, lakes, hiking trails, etc. within driving distance of our home.

Which profession would you choose if you were not a scientist?

My passions have always leaned toward the creative side. If I didn’t end up as a scientist, I might have pursued writing, or music (clarinet), or art. I decided on science because I figured that chemistry is harder to do as a hobby.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Two things helped me a lot pre-tenure. The first was being part of a peer mentoring network. This was a group of 10 women science faculty who met every other week to discuss topics related to our careers. The structured meetings were based on the book Every Other Thursday by Ellen Daniell. We found this group incredibly helpful in dealing with issues (e.g., related to teaching, mentoring, navigating university politics) and clarifying and achieving our goals. I encourage junior faculty to set up a similar group, and I am always happy to answer questions or give guidance on this – the support I received was so helpful that I want everyone to experience it! (And to note, this is not only useful for junior faculty – I know of groups set up by postdocs and graduate students, as well as a group by senior women faculty).

The second thing I found helpful was limiting the time I put into my work. We can always do more, and it’s hard to feel as though we’re doing enough. I decided early on that if I couldn’t get tenure while still enjoying my job and my life, then tenure wasn’t worth it. That thought has alleviated guilt I would otherwise feel about taking time for me and my family. I’m sure I could have been a bit more productive if I had forced myself to work more, but I would have been much less happy. I want to love my job forever, and my approach will help me do that. Everyone’s idea of balance will be different, but I think that understanding what that is and consciously working to achieve it is important for long-term happiness and success.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)