Battery Buffer: Layered oxide that shrinks when ions intercalated

Battery electrodes are typically made from layered oxide materials. However, these layered oxides often undergo a positive ‘strain effect’ or expansion when ions are incorporated into their structure. This can leads to inferior long-term cycling stability and reduced battery safety. However, scientists at the Chinese Academy of Sciences, have synthesised a negative strain layered oxide, Na0.5NbO2, which exhibits high stability, a long cycling life and an impressive rate performance. This material shrinks on intercalation of sodium ions which is thought to be a result of enhanced interlayer Na–O interactions and weakened Nb–Nb and Nb–O bonding. The researchers have also found that the material is suitable as an independent electrode material and as a buffer in composite electrodes, yet the high cost of niobium and the difficulty of synthesis may limit its future application. The lattice shrinks upon intercalation of sodium ions

Want to know more?

Read the full article in Chemistry World by Laura Fisher.

Or, take a look at the original article which is free to access until 9th September 2015:

Anti-P2 structured Na0.5NbO2 and its negative strain effect” by X. Wang et al.DOI:10.1039/C5EE01745A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)