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Bill Gerwick collecting a natural product
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Motivation

• Natural products (NPs) comprise somewhere 
between 30-50% of drugs on the market

• The pipeline for novel NPs (after collection) 
starts with purification and structure 
determination

• 2D HSQC NMR is the preferred method for 
initial molecule structure elucidation

• But this interpretation step requires a great 
deal of human expertise, i.e., Bill Gerwick!
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2D NMR is an Indicator
 of Compound Structure

HSQC 3.6mg, C6D6

Caldora penicillata
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Each “dot” here 
corresponds to a bond
between a hydrogen 
and a carbon 
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Where the dots appear 
depend on the neighboring 
atoms – this is called the 
“chemical shift”
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And now I’ve told you 
everything I know about 
NMR!!! This is why it’s 
good to have collaborators!



2D NMR is an Indicator
 of Compound Structure

HSQC 3.6mg, C6D6
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9/23/25 SPECTRE@ChemSpider 9

An expert (e.g., Bill 
Gerwick) can look at this 
and say “Ok, looks like 
we have a methyl group”

We think of this as 
“the face of the molecule”
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Enter Deep Learning

• Our student Chen Zhang had the idea that what Bill 
was doing was like face recognition – so he came to 
me.

• We started the SMART project – treating the 2D NMR 
as an image, and using Convolutional Neural 
Networks to map that image to a cluster space where 
similar compounds had similar locations in the space.

• Given a new compound, nearby points in the space 
suggested possible structures
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We created a sequence of better and better models…
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DeepSAT Network architecture:
Supervised multi-task CNN

SPECTRE@ChemSpider 139/23/25

HSQC Spectrum
Convolutional 

Neural 
Network

Morgan Fingerprint

Classifier 
(~600 different classes of molecule)

Molecular weight



DeepSAT Network architecture:
Supervised multi-task CNN
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Main output: Morgan Fingerprints, a vector-based 
representation of molecular structure
These are compared to a database of MFs, and a list of 
similar molecules are returned



Morgan fingerprints
• Morgan Fingerprints are a vector-based representation of molecular 

structure used in many computational tools for cheminformatics

• DeepSAT uses a 6,144 bit vector, with each position associated with a 
specific partial structure

• A “1” means that this substructure is in the molecule, 
• A “0” means it’s absent

1 0 1 0 0 1 0 0 1 0 1

Molecular structure
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DeepSAT – Using Morgan-type 
Fingerprints to Determine Chemical Similarity

Hyunwoo Kim

This result gives the researcher clues to the chemical structure 
of a novel compound – speeding structure identification
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What’s wrong with this picture?
• These models have over 8k users and over 

450k queries.
• But they’re limited and inefficient for three 

reasons:
– They only take 2D HSQC NMR as inputs
• Inflexible

– Over 99% of the pixels are zero! 
• A lot of wasted compute.

– The target, Morgan Fingerprints, are a hash table
• Collisions: Locations in the table are ambiguous
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The First Main Idea of this talk: Transformers

• A transformer is what underlies ChatGPT:
– It takes words as input
– It processes those words in the context of other 

words to extract meaning
• Instead of words, we give it the only the (x,y) locations 

of the peaks
– much more efficient (no wasted computation) 
– It processes the peaks in the context of the other 

peaks 
• Just like DeepSAT, we train it to produce Morgan 

Fingerprints from thousands of examples
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The First Main Idea of this talk: Transformers
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Peaks are encoded by their chemical shift as well as their 
multiplicity - odd or even # of bonds



The Second Main Idea of this talk: Flexible Inputs
• A transformer is what underlies ChatGPT:
– It takes words as input
– It processes those words in the context of other words to 

extract meaning
• Instead of words, we give it the (x,y) locations of the peaks
– much more efficient!

• We can also give it other data, tagged by its type:
– 1D 13C NMR peaks: (C,x1), (C,x2), (C,x3),… (C,xNC)
– 1D 1H NMR peaks:  (H,x1), (H,x2), (H,x3),…, (H,xNH)
– Molecular weight: (MW,470.3)

• We train it by randomly choosing what data types to give it as 
input - over many training trials, it learns to use whatever data is 
available

9/23/25 SPECTRE@ChemSpider 21



The Second Main Idea of this talk: Flexible Inputs

• Now we can give it multiple data types – 2D NMR, 1D NMR, 
Molecular weight

• We train it by randomly giving it different types of data for each 
example – one time, it might just have 2D HSQC and 1D 
Carbon NMR, other times, just 1D Carbon, etc.
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The Third Main Idea of this talk: 
Better Morgan Fingerprints

• We created Morgan Fingerprints up to radius 9 over a 
large dataset of molecules

• We sort them by their entropy, keeping the bits with the 
most information and label them with the substructure

• We keep 16,384 of these bits in the vector
• In our hands, these are collision-free: ever bit in the 

vector corresponds to a unique substructure
– So we can label which parts of the retrieved structures match 

and which don’t
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Network Architecture

Instead of predicting the next word, like ChatGPT, it is trained to 
predict our super-duper Morgan Fingerprint
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Like DeepSAT, SPECTRE uses the super-duper Morgan 
Fingerprint to find similar molecules

Our retrieval set is very large - over 520,000 NP candidates

Hyunwoo Kim

The result is a list of molecules ordered by their similarity to 
the predicted fingerprint – speeding structure identification



Literature NMR spectra 
29,500 NPs + 6,000 organic 

compounds

Computed NMR spectra
ACD/Labs 113,967

1D NMR spectra (1H & 13C)
Natural Products 155,815

CH-NMR-NP

1H-13C HSQC (n = 
137,267)

1D NMR (n = 
155,815)

Data Collection

+ chemical names, SMILES strings, and molecular weight

Retrieval DB
526,316 NPs

Training Set

Test Set
n = 4,096

Validation Set
n = 4,056

Chosen when all three NMR spectra 
(1H, 13C, and HSQC) were available

Data Collection & Training, Test, and Validation Set:
We collected a LOT of data from publicly available datasets,

as well as predicting data to train on
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Results, quantitative
We compared SPECTRE against specialized models trained 
only on one type of data; here, we’re measuring when the 

correct molecule is the top hit.
(in practice, we can apply the best model in each case)
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Results, qualitative
Here, using Multiplicity-Edited HSQC as input

Monchicamide I
(input)

Closest retrieved molecule
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Results, qualitative
Using only Standard HSQC as input

Aculeapuridone A 
(input)

Closest retrieved molecule
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Results, qualitative
Here, using only 13C NMR as input

Alstolarsine A 
(input)

Closest retrieved molecule
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Results, qualitative
Here, using only 1H NMR as input 

(doesn’t work well)

Wrightioside A 
(input)

1st Closest 
retrieved 
molecule

2nd Closest 
retrieved 
molecule
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Results, qualitative
Proton-deficient compounds: 

The power of multiple input data types

Aetokthonotoxin
(input)

Using 
only 
13C

Using 
only 
ME-

HSQC

Using
ME-

HSQC 
+ 13C

Using
ME-

HSQC 
+ 13C
+ MW
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Results, qualitative
Proton-deficient compounds: 

The power of multiple input data types

Aetokthonotoxin
(input)

Using 
only 
13C

Using 
only 
ME-

HSQC

Using
ME-

HSQC 
+ 13C

Using
ME-

HSQC 
+ 13C
+ MW

A perfect match – the molecule has been “dereplicated”
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The advantage of unique bits in our entropy-
optimized Morgan Fingerprints

We can mark what matches and what doesn’t



Conclusions
• SPECTRE is a major advance over our previous work 
• It automagically combines data from multiple sources to 

obtain the best result, given the amount of data provided
• It uses an advanced form of Morgan Fingerprint – we call 

“entropy-optimized Morgan Fingerprints”
• These allow highlighting of matching substructures – 

providing more information than just – hey, this is 
similar!

• It beats our previous state of the art model by a lot!
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Thanks!! 
To these very smart folks!

Chen Zhang
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And thank YOU for listening!

Questions?

39
The Model 2.0


