

WANTED: standard notation for reusable chemical data

Leah McEwen, Cornell University Library IUPAC Committee on Publications and Cheminformatics Data Standards

ChemSpider Webinar 2023.10.17

UPA (

Morgati (2017) hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007

Nguyen et al. (2016) doi.org/10.1021/acs.estlett.6b0016

I U P A C

FAIR: "Fully AI-Ready"

Fully AI Ready data are more than accessible digital dataset objects ...

- The better quality and precision you have, the stronger the model
- Integrating more data enables more robust discernment of effect from noise

Requirements

- Metadata completeness & consistency
- Data model & domain level description
- "Chemically intelligent" notations can help
 - Encapsulate formal theories and methods

Standard notations can help even more

UPAC

Standards allow us to ...

Ascertain fitness-for-purpose

- Dimensions & scope
- Quality & precision

Compile & integrate Analyze & visualize Compute & model "A quantitative representation of your subject, however simplified, even in its errors and omissions, is precise. You can think about it rigorously. You can manipulate it and experiment with it." ~A. W. Crosby, The Measure of Reality

... more reliably, with less lossy-ness and tedious data cleanup

• some curation still needed (to apply and validate implementations)

Are these data **RIPE** for reuse?

Reliable

 can the data be unambiguously positioned relative to the scientific context with the available information provided?

Interpretable

 are data and metadata expressed in a way that is scientifically interpretable and agnostic across local systems (and/or can be converted)?

Processable

 are data and metadata in forms that are processable by common protocols, architectures and infrastructure utilized in the cloud?

Exchangeable

• are the metadata necessary for finding, accessing, retrieving and processing exposed to APIs via registries, repositories and other information systems?

Reliable & Interpretable

✓ Samples

- ✓ Chemical composition
- ✓ Physical state

✓Quantities

- ✓ Equation, symbol, units
- ✓ Rules (variables, constraints, dependencies)

✓ Measurements

- Principle, method, procedure
- ✓ Conditions

✓ Uncertainty

✓ Provenance

Name	Symbol	Definition	SI unit	Common units
Mass concentration	γ , $ ho$ n	$\gamma_i = m_i / V$	$\mathrm{kg}\mathrm{m}^{-3}$	$g/L = g dm^{-3}$
Volume concentration	σ n	$\sigma_i = V_i / V$	1	1
Amount concentration	c n	$c_{\rm B} = n_{\rm B}/V$	$molm^{-3}$	$mol/L = mol dm^{-3}$
Number concentration	n C	$C_{\rm B} = N_{\rm B}/V$	m ⁻³	cm^{-3}
Concentrations	7			
Mass concentration Volume concentration				γ (EtOH) = 571 g/L σ (EtOH) = 0,723

Mass concentration	$\gamma(\text{EtOH}) = 5/1 \text{ g/L}$
Volume concentration	$\sigma(\text{EtOH}) = 0,723$
Amount concentration	c(EtOH) = 12,4 mol/L
Number concentration	$C(\text{EtOH}) = 7,47 \times 10^{21} \text{ cm}^{-3}$

Ρ C

2

	2				
60_3	COMPONENTS:		ORIGINAL MEASUREMENTS:		
	(1) Tetrabromomethane (Carbon tetrabromide); CBr.: [558-13-4]			Gross, P. M.; Saylor, J. H.	
	(2) Water; H_2O ; [7732-18-5]			J. Am. Soc. Soc. <u>1</u>	<u>931</u> , <i>53</i> , 1744-51.
	VARIABLES:			PREPARED BY:	
	T/K = 303		A. L. Horvath		
	EXPERIMENTA	L VALUES:			
		t/°C	$1000 g_1/g_2$	100 w _i (compiler)	$10^5 x,$ (compiler)
		30	0.24	2.4×10^{-2}	1.30
	AUXILIARY			NFORMATION	
	METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:		
	An excess of tetrabromomethane in 500 g water was shaken for 12 hours in a thermostat bath. Sam- ples were then withdrawn and read against water in an interferometer made by Zeiss (ref. 1). A detailed description of the complete procedure is given in a Ph. D. thesis (ref. 2).		 Eastman Kodal ethyl alcohol a Distilled. 	k Co., recrystallized from and petroleum ether before use.	
			ESTIMATED ERRORS:		
				Solubility: Temperature:	± 8.0%. ± 0.02 K.
			REFERENCES:		
				 Gross, P. M. 2362. Saylor, J. H. 	J. Am. Chem. Soc. <u>1929</u> , 51, Ph. D. thesis, Duke Univer-
			sity, Durnann,	<u>1222</u> .	

Expression of chemical data

Mass fraction of substance 1, w_1 or w(1):

 $w_1 = g_1 / \sum_{s=1}^{c} g_s$

Mole fraction of substance 1, x_1 or x(1):

 $x_1 = n_1 / \sum_{s=1}^{c} n_s$

Name	Symbol	Definition
Mass fraction	w	$w_i=m_i/\sum m_j$
Volume fraction	φ	$\varphi_i = V_i / \sum V_j$
(Chemical) amount fraction, mole fraction, number fra	xction	$x_{\mathbf{B}} = n_{\mathbf{B}} / \sum n_j = N_{\mathbf{B}} / \sum N_j$

Horvath & Getzen (1995) IUPAC Solubility Data Series, Vol. 60

Exchangeable

- Domain metadata in APIs and DOIs
 - PIDs and notations

Chemical entities

- Searching
- Integration

Navigating differences and ambiguity

- Resolving
- Mapping

RIPE: well-defined chemical data are broadly reusable

RIPE 4 sharing	Chemical data	Standard definitions (examples)
Reliable information for samples & measurements	Samples: identity of substance(s), sample description (provenance, purity, state)	nomenclature (Blue/Red/Purple books), graphical representation, InChI
	Measurements: techniques, conditions, calibrations, uncertainties	Terminology for analytical chemistry (Orange book), metrology (VIM)
Interpretable scientific expression	Results: quantities, units, calculations, dependencies, processing/derivation	Notations, symbols, terminology for physical chemistry (Green book)
Processable formatted for machines	File formats, validation	SDF, CIF, ThermoML, JCAMP-DX, mzML
	Referrable terms, ontologies	Gold Book, CHMO, RXNO, ChEBI
	Data models, metadata schema	FAIRSpec, Solubility, Periodic Table
Exchangeable metadata online	Registered metadata for indexing chemicals	InChIs, standard terms/notations
	Standardized exchange APIs for chemicals	Chemical structure API specification

(items in italics are in progress)

WorldFAIR Project D3.1 (Table 1) https://doi.org/10.5281/zenodo.7887283

Integrating data across domains

Chemical substance: integration by chemical identification → *standard chemical identifier*

Chemical property: integration of property values

→ standard property terms

Measurement: integration by technique, by conditions

standard definitions

Units: integration of quantities → *standard units of measure*

Material sample: integration by composition, state of matter, space group → *standard classifications/descriptions*

Origin of sample: integration by location, source (e.g., species), named reactions

→ standard location metadata, species classification, reaction classification

Origin of measurement: integration by analyst or lab, by instrument → *PIDs: ORCID, ROR, etc.*

Temporal: integration by date of sample collection, date of measurement → standard date format

WorldFAIR: data standards for digital reuse

Digital motifs of scientific standards

- Aligned with FAIR principles
- Aligned with common high-level protocols and architectures in the cloud

Best practice

- How to use in data management tools and workflows
- Guidance for policy development

Engagement with broader community

- Case studies in chemistry and neighboring disciplines
- Modeling data integration

IUPAC standard definitions and properties

 Chemical representation Nomenclature Blue Book (organic) Red Book (inorganic) Purple Book (polymer) Graphical representation (structures, stereo, reactions) 	 Chemical terminology Orange Book (analytical) Silver Book (clinical) White Book (biochemical) Green Book (physical) 	 Chemical properties Periodic Table (CIAAW tables) Solubility Data Series Atmospheric kinetics datasheets Polymerization kinetics dataset Stability constants dataset 		
Machine-processable (to some degree)				
 InChl notations InChlKey RInChl MInChl NInChl SMILES+ notation HELM notation Glycans notation 	 Gold Book (compendium) NPU terminology for clinical chemistry Green book digital quantities & symbols DRUM digital units 	 JCAMP-DX spectra format ThermoML format AIF adsorption format FAIRSpec metadata principles MAPT metadata schema Solubility metadata schema Dissociation constants dataset Atmospheric kinetics dataset Polymerization kinetics database 		

IUPAC standards: analog to digital workflows

Users & applications in data context

- Researchers documenting and reporting data
- Repositories aggregating chemical data
- Large databases of chemical substances
- Cheminformatics toolkits
- Chemical drawing and naming programs
- Electronic lab notebooks
- Modelers and data scientists
- Other developers and enablers
- Digital data projects in cognate disciplines

Gaps & challenges

- Gaps: FAIR access to evaluated property datasets, quantity models, semantic classifications
- Challenges: validation, harmonization provenance, licensing, sustainable development, outreach & adoption support

Community challenges in chemistry

Where are our data?

• Are they sustainably hosted and curated?

Consumers + Curators

Can we establish cross-community consensus around data standards?

• Best practices? Adoption? Validation?

What are we willing to pay for? (to sustain data & standards curation)

• Workflow tools? Value add AI & modeling tools?

Can we enable open, crowd funded and supported tools that evolve with the needs of the community?

How are we introducing digital data principles and management to young and early career chemical professionals and other scientists?

Collaborations

Digital exchange already predominates scientific communication and is rife for improvement and advancement – lets collaborate!

- WorldFAIR Chemistry team (iupac.org/project/2022-012-1-024)
- **IUPAC** Secretariat & volunteers
- Community collaborators (chemical sciences & beyond)
- WorldFAIR project collaborators
- WorldFAIR project funders

WorldFAIR "Global cooperation on FAIR data policy and practice" is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393.