Hot Article: Gibbs elasticity effect in foam shear flows: a non quasi-static 2D numerical simulation

Have you ever wondered what’s going on in a foam when it flows? In her latest Soft Matter paper, Isabelle Cantat at the Université Rennes, France, simulates the dissipation of bubbles in foam. Cantat used 2D numerical simulations involving 500 bubbles under simple shear, in a non-quasi static regime to study the dissipation of bubbles.

Graphical abstract: Gibbs elasticity effect in foam shear flows: a non quasi-static 2D numerical simulation

Cantat shows that small tension dynamical inhomogeneities induce foam structure modifications responsible for the largest part of the stress increase. The stress increase with increasing shear rate is mainly due to increasing bubble elongation that can be interpreted as an increase of the plastic threshold.

Interested to know more? Read Cantat’s Soft Matter paper here:

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)