Archive for the ‘Author of the Month’ Category

Author of the Month: Prof. Philipp Vana

Philipp Vana studied Chemistry at the University of Vienna, Austria, were he obtained a Master of Natural Sciences in 1996 and a Doctor of Natural Sciences in 1999 after investigating chain-length dependent termination kinetics in radical polymerisation in Professor Oskar-Friedrich Olaj’s group. Parallel to his PhD, he studied economics and law and obtained a diploma from the Technical University Vienna and a Master of Business Administration from the Danube-University Krems, Austria. Between 2001 and 2003 he was a Schrödinger-Fellow of the Austrian Science Fund at the Centre for Advanced Macromolecular Design (CAMD) at the University of New South Wales, Australia, were he work in the group of Professor Tom Davis in the field of RAFT polymerisation kinetics. In 2003, he established an independent research group at the University of Göttingen, Germany, specifically focusing on macromolecular design and functional polymer materials. In 2005 he became a Fellow of the Japan Society for the Promotion of Science at Kyoto University in Professor Takeshi Fukuda’s group, were he moved into the field of polymer brushes and surface modifications. In 2008 he was granted the prestigious Heisenberg-Professorship of the German Research Foundation (DFG) at the University of Göttingen, where he finally became a Full Professor for Macromolecular Chemistry in 2010 after declining offers from Leipzig University and Duisburg-Essen University. Since 2013 he has been the director of the Institute of Physical Chemistry in Göttingen. Philipp has published more than 100 original research papers in addition to several book chapters, reviews and patents.

His scientific interests are macromolecular chemistry with a focus on tailored polymer microstructures and topologies as well as kinetic and mechanistic studies of polymerisation processes. He works on biomimetic high-performance polymers, polymer brushes and films on solid surfaces, functionalised polymers, printing inks, tire materials, liquid crystal displays and UV-switchable block copolymers. He also works on kinetics and mechanisms of radical polymerisations, which are studied via pulsed laser methods coupled with highly time-resolved EPR spectroscopy as well as via computer simulations. A special focus in polymer analytics is on soft ionisation mass spectrometry, AFM, mechanical testing of polymers, ellipsometry, and IR-spectroscopy.

Find out more about Philip Vana’s research by visiting his group Web-site.

What was your inspiration in becoming a chemist?

I am from a family of natural scientists – my father was a physicist, my mother a chemist and so I got in touch with all the interesting aspects of natural science very early on. However, I noticed during my childhood that my interests lay more in the field of biology and living matter and so I decided to study biochemistry; I was worried about the career perspectives of a pure biologist. During my studies I got in touch with chemistry and quickly noticed that it was extremely exciting and interesting, this changed my original plan and I switched to chemistry. I haven’t regretted the decision ever since and I am very happy to be a synthetic chemist. I then chose the field of polymer chemistry, I think it is the most exciting area of chemistry due to its large diversity. In the end, I came back to my original interests in biology by working on bio-inspired materials.

What was the motivation to write your Polymer Chemistry article?

I was always intrigued by the complexity and beauty of natural systems. I find it exciting to learn from nature by copying important aspects of natural materials and transpose them to purely synthetic fabrics. When I was writing a grant application several years ago, I accidently saw a picture of titin on the transparency of a conference talk. For me, as a polymer chemist, the structure looked like a very regular polymer made of individual ring-like monomers. At the time I was a PI in a graduate school in which hydrogen bonds were investigated in great detail. I started to interconnect all these aspects and came up with a project plan that aimed to fabricate a synthetic titin. To our delight, the project was granted but it then took some time to arrive at the final material because we first had to explore and optimise all the individual components of the system, including ring polymers. However, we are very happy that we could indeed mimic the structure of titin.

Why did you choose Polymer Chemistry to publish your work?

Honestly, this was the first time that I published in Polymer Chemistry. Many of our earlier work was very much related to physical chemistry, engineering, analytics and physics of polymers and I did not consider our work as being pure polymer chemistry. Nevertheless, I was very much impressed by the rise of this journal, in which many of my friends and colleagues are deeply involved. I also find the topics that are covered extremely interesting, especially the strong focus on controlled radical polymerisation, I am a loyal reader of this beautiful journal. Within this context, I find it amusing that my first paper in Polymer Chemistry is not related to controlled radical polymerisation at all, but we present a new way of forming modular polycyclic structures via step-growth, which we had never used before. In any case, I found this topic to be exactly in scope of Polymer Chemistry, which made it easy for me to chose it for this publication.

In which upcoming conferences may our readers meet you?

As I will shortly become dean of our faculty for the next two years, I cannot make exact plans for the near future but you can always meet my students and colleagues from my group at different conferences world-wide presenting our work. A group of my students, for instance will present our results in the field of nano-composite materials at the Fourth International Conference on Multifunctional, Hybrid and Nanomaterials in Sitges, Spain, 9 – 13 March 2015.

How do you spend your spare time?

I have a family with four small children and my wife and I are both work full days. This means that most of my time outside of the university is spent taking care of my children and organising daily life, which I very much enjoy. There is consequently not much time left for personal hobbies in the moment, but the time with my family gives me strength for my scientific endeavours as it clears my mind and wipes away old thoughts making room for new ideas.

Which profession would you choose if you were not a scientist?

Actually, I am very pleased with my job and enjoy most of my time being a Professor of Macromolecular Chemistry. The second best choice for me would have been an architect. I always loved making construction designs and graphics and I would love to design buildings from scratch. In a way, this would be similar to what I am doing now, but aiming at much larger structures. As an architect of molecules, however I am also very happy, although I haven’t found any inhabitants for our little macromolecular constructions yet!


Titin-mimicking polycyclic polymers with shape regeneration and healing properties

Jan-Hendrik Schuetz,   Peng Wentao and   Philipp Vana

Polycyclic polymers based on cyclic (ABC)n-multiblock-copolymers are formed via stepwise polymerisation of three individual blocks and exploiting the ring merging reaction of these ring polymers. The so-obtained precursor ring-polymers were interconnected via click reaction. Small blocks within the rings with the ability to form self-complementary hydrogen bonds lead to intra- and intermolecular links between polycyclic polymers. The obtained materials, which mimic nature’s paragon Titin, have some extraordinary material properties concerning elasticity and energy dissipation.


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an Associate Professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Dr. Antoine Debuigne

Dr. Antoine Debuigne is currently a Research Associate of the National Fund for Scientific Research (F.R.S. – FNRS) at the University of Liege, Belgium. He graduated in 1999 from the University of Namur, Belgium, following a master’s thesis in organic chemistry. In 2004, he obtained his Ph.D. degree from the Center for Education and Research on Macromolecules (CERM), University of Liege, Belgium, directed by Prof. R. Jérôme. He then moved to the University of Toronto, Canada, and conducted post-doctoral research in Prof. M.K. Georges’ group, who pioneered the field of controlled radical polymerisation. In 2006, he returned to the CERM in Liege as a FNRS post-doctoral researcher and was promoted to FNRS Research Associate in 2010 in the same group. His research interests include controlled radical polymerisation, organometallic chemistry, macromolecular engineering and emulsion polymerisation.

To find out more about the CERM please follow the link.

What was your inspiration in becoming a chemist?

Several members of my family are scientists, even chemists, so “I fell early into chemistry”. During my scholarship, I also met excellent science teachers who taught me how important science is for understanding the world we are living in. So, I decided to make it my job. Among all scientific fields, I chose chemistry because it appeared to me as a central and practical discipline.

What was the motivation to write your Polymer Chemistry article?

Recent progress in controlled radical polymerisation (CRP) is impressive. The increasing precision and complexity of polymer structures achievable and their use in a broad range of applications might suggest that challenges in CRP may soon be non-existent. However, this is not the case and efforts still need to be expended to improve the existing tools and discover new ones in order to finely tune polymer properties. This is what the present Polymer Chemistry article is about. Indeed, poly(N-vinylcaprolactam) (PNVCL) combines valued properties such as water solubility, biocompatibility and thermo-responsiveness, but has not reached its full potential so far due to limitations in macromolecular engineering techniques. Nevertheless, the Organometallic-Mediated Radical Polymerisation (OMRP), a CRP method developed in the lab for many years, permitted us to produce a series of well-defined N-vinylcaprolactam and N-vinylpyrrolidone-based copolymers including statistical, diblock and triblock copolymers, having single or dual thermo-responsive behaviour in water. The high level of control afforded by OMRP allowed us to highlight the crucial impact of the copolymer composition, block length and architecture on the cloud point temperature of each segment and to tune their multistep assembly behaviour. The reversible temperature triggered assembly of such block copolymers in water opens new perspectives in the field of stimuli-responsive encapsulation/release applications.

Why did you choose Polymer Chemistry to publish your work?

My co-authors and I chose Polymer Chemistry because it provides high quality manuscripts in polymer science to a broad audience. This last aspect was crucial in the selection of a journal because our contribution contains progress in both macromolecular engineering and characterisation of the thermal response of copolymers in solution.

In which upcoming conferences may our readers meet you?

My agenda is still unclear for the next few months but I really would like to attend the Gordon Research Conference on Polymers, South Hadley, MA, USA  in June 2015.

How do you spend your spare time?

I enjoy spending time with my 6-year old son, friends and relatives. I also like reading novels and practice more and more photography. In this respect, I warmly recommend a visit to the photography museum of Charleroi in Belgium.

Which profession would you choose if you were not a scientist?

Maybe architect because this profession requires both technical and artistic skills. Having said that, I have no regret at all.

One of my pictures. “Building reflected on water”



Double thermo-responsive hydrogels from poly(vinylcaprolactam) containing diblock and triblock copolymers

Jean-Michel Thomassin,  Kevin Mathieu,   Anthony Kermagoret,   Charles-André Fustin,   Christine Jérôme and   Antoine Debuigne

The thermally-induced gelation and gel properties of concentrated aqueous solutions of double thermoresponsive poly(N-vinylamide)-based di- and triblock copolymers are studied by rheology. The copolymers under investigation, prepared by cobalt-mediated radical polymerisation and coupling reactions, are composed of poly(vinylcaprolactam) (PNVCL) blocks and of a statistical poly(vinylcaprolactam-stat-vinylpyrrolidone) segment with a cloud point temperature (TCP) higher than that of PNVCL. Heating the di- and triblock solutions beyond the first phase transition temperature favours gel formation while heating above the second TCP leads to opaque gels without macroscopic demixing. Moduli of the triblock hydrogels are systematically higher than those of the corresponding diblocks, even above the second transition. Rheological data suggest distinct micellar structures for each copolymer architecture: densely packed micelles of diblocks and 3-D networks of bridged micelles for triblocks. Strain sweep experiments also emphasize the positive effect of the micelle bridging on the elasticity and stability of the hydrogels. The formation and properties of the obtained gels are also shown to depend on the copolymer concentration, block length, and composition. Addition of salt also allows us to tune the phase transition temperatures of these double thermoresponsive hydrogels.


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an Associate Professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia).



Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Prof. Feihe Huang

Feihe Huang was born in Shaodong, Hunan, China in 1973. He obtained his Bachelor of Polymer Materials Science and Engineering degree from Hefei University of Technology in July 1996 and a Masters in Polymer Chemistry and Physics from the University of Science and Technology of China in July 1999. After a year of studying at the University of Washington, he transferred to Virginia Polytechnic Institute and State University (VT) where he joined Prof. Harry W. Gibson’s group in August 2000. He earned the degree of Master of Science in Chemistry in August 2003. He finished his coursework and research for his PhD in Chemistry during the spring of 2005 with the aid and guidance of Prof. Harry W. Gibson. He joined Prof. Peter J. Stang’s group at the University of Utah as a postdoctoral fellow in March 2005. In December 2005, he became a professor of chemistry at the Department of Chemistry, Zhejiang University. In March 2008, he became a Qiushi Chair Professor of Zhejiang University. His current research interests are supramolecular polymers and pillar[n]arene supramolecular chemistry.

Awards and honours he has received to date include the William Preston Award for a MS Thesis from VT, a 2004 Chinese Government Award for Outstanding Self-Financed Students Abroad, The Sigma Xi Research Award for Ph.D. Degree Candidates from the VT Chapter of Sigma Xi Research Society, Outstanding Ph.D. Dissertation Award from VT, the Thieme Chemistry Journals Award, the Outstanding Recent Graduate Alumnus Award from VT, a Humboldt Fellowship for Experienced Researchers from the Humboldt Foundation, The National Science Fund for Distinguished Young Winner (China), Fellow of the Royal Society of Chemistry, and the Chinese Chemical Society AkzoNobel Chemical Sciences Award. He has published more than 160 supramolecular chemistry papers in journals such as PNAS (2), J. Am. Chem. Soc. (18), Angew. Chem., Int. Ed. (5), Adv. Mater. (5), Chem. Soc. Rev. (5), Acc. Chem. Res. (5), Prog. Polym. Sci. (1). His publications have been cited more than 7700 times and he has a h-index of 49. He has served as a guest editor for Chem. Soc. Rev.Acc. Chem. Res.Chem. Rev.and Chem. Commun. He currently sits on the Advisory Boards of Chemical Society ReviewsChemical Communications, Acta Chim. SinicaMacromoleculesACS Macro Letters and Polymer Chemistry.

For more information about Feihe Huang’s research group visit the website

What was your inspiration in becoming a chemist?

I wanted to make new materials for us to have better lives and a greener world.

What was the motivation to write your Polymer Chemistry article?

Supramolecular crosslinked polymer gels have tremendous potential as smart materials because they offer a special combination of the elastic behaviour of solids and the microviscous properties of fluids. From many published reports related to supramolecular crosslinked polymer gels, one can reach two general conclusions: 1) there are many kinds of non-convalent interactions that can be used to crosslink polymeric chains to yield supramolecular gels and 2) usually these supramolecular gels contain only one kind of noncovalent crosslink. The consequence of using a single type of supramolecular crosslink is that above some level of external stimulation, sufficient cross-links are broken and subsequently a gel to sol transition usually occurs. This transition, which can occur across a narrow stimulus window, can limit applications in several ways. In order to solve this problem, we are interested in the fabrication of supramolecular crosslinked polymer gels containing two types of physical crosslinks based on two orthogonal supramolecular interactions. In such a system, one supramolecular crosslink can be used to maintain the gel state and the other to change the crosslinking density of the gel under external stimuli, thereby giving rise to the macroscale expansion-contraction behaviour of the gel without the gel-sol transition. The roles of the two networks can be reversed, allowing for a multi-responsive, expansion-contraction system that will be more adaptive. Finally, addition of both stimuli will allow breakdown of the gel. In this Polymer Chemistry article, we report that exactly such a double supramolecular crosslinked polymer gel based on hydrogen bonding and a macrocycle threading process achieves these properties.

Why did you choose Polymer Chemistry to publish your work?

Firstly, Polymer Chemistry is a very good journal and it is great to publish my work in it. Secondly, I am an Advisory Board member for Polymer Chemistry and I want to contribute to the development of this journal.

In which upcoming conferences may our readers meet you?

I am attending the First Artificial Molecular Switches and Motors Gordon Research Conference which will be held at Stonehill College, Easton, MA (USA) on 7th-12th June 2015. Follow the link for more information about this conference.

How do you spend your spare time?

Playing with my son, reading, listen to music, and travelling.

Which profession would you choose if you were not a scientist?

I would be a high-school teacher because I want to work with and help young people.


Feihe Huang's group


A double supramolecular crosslinked polymer gel exhibiting macroscale expansion and contraction behavior and multistimuli responsiveness

Xiaofan Ji, Kecheng Jie, Steve Zimmerman and Feihe Huang

Supramolecular crosslinked polymer gels show special properties largely as a result of the combined mechanical properties contributed by the covalently linked polymer chains and the reversible, stimuli-responsive supramolecular crosslinks. Most supramolecular crosslinked polymer gels contain only one kind of physical cross-link. Herein we report a novel supramolecular polymer gel containing two types of physical crosslinks based on two kinds of non-covalent interactions that are orthogonal: DAN-DeUG quadruply hydrogen-bonding interactions and benzo-21-crown-7/dialkylammonium salt host-guest interactions. One of the crosslinked networks is used to maintain the gel state while the other modulates the crosslink density through an external stimuli, thereby causing a volume change of the gel. This double supramolecular crosslinked polymer gel shows macroscale expansion and contraction behaviour and multistimuli responsiveness. Therefore, we successfully demonstrate that the macroscopic property changes of supramolecular systems can be induced by controlled self-assembly on the molecular scale.


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an Associate Professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Prof. Jacques Lalevée

Prof. Jacques Lalevée was born in Remiremont (France) in 1976. After studying Physical Chemistry at the University of Nancy (now University of Lorraine), he received his Ph.D. degree in Materials Chemistry under the supervision of Prof. Jean Pierre Fouassier from Mulhouse in 2002. After approximately one-year of postdoctoral research with Prof. Gerd Kothe (Germany), he joined the “Ecole Nationale Supérieure de Chimie de Mulhouse (ENSCMu)” in September, 2004. He was promoted to full professor in September, 2009. Since 2011, Jacques has been a Professor at the “Institut Universitaire de France (IUF-Paris)”. His current research interests encompass free radical chemistry, the design of new (photo)polymerisation initiating systems and new polymers, as well as mechanistic elucidation in polymer chemistry. He has published nearly 200 peer-reviewed papers with an H-index of 29.

He was awarded the Guy Ourisson 2013 Prize as well as the national prize of the French polymer group (GFP) in 2014.

What was your inspiration in becoming a chemist?

I became really interested in chemistry at high school. I was fascinated by chemical reactions and the possibility of understanding events at this molecular scale. I have always been interested in free radical chemistry as many different reaction pathways can be expected from these chemical species. The “positive” use of free radicals in polymerisation processes was always a challenge for me; particularly the possibility of triggering processes by light for perfect time and spatial controls.

What was the motivation to write your Polymer Chemistry article?

Light-induced polymerisation technique is a promising approach for the fabrication of various polymeric materials due to its environmental, economic and production benefits. This technique is mainly based on the photochemically generated reactive species (e.g. radicals or cations, produced from the photochemical reactions of photoinitiating systems after the absorption of light) to rapidly transform the specially formulated reactive liquids to solids (3D polymeric networks for various materials) at room temperature. Recently, light-emitting diodes (LEDs) have attracted increased attention as potential irradiation sources for photopolymerisation processes substituting traditional mercury UV lamps; their advantages include being more environmentally friendly, having better light output, higher operating efficiency and lower cost and energy consumption.

Recently, the use of metal based complexes as photoredox catalysts in polymer science has generated lots of interest and is actually a huge challenge. In the present paper, we propose a new iridium complex (Ir(btp)2(tmd)) as a novel photoredox catalyst with enhanced efficiency under visible lights (laser diodes, LEDs and household halogen lamp) for i) cationic polymerisation, ii) free radical polymerisation, iii) controlled/living radical polymerisation and iv) polymer surface modification, including micropatterning by laser direct writing.

Why did you choose Polymer Chemistry to publish your work?

The Royal Society of Chemistry is clearly one of the leading societies and accordingly its polymer journal “Polymer Chemistry” has rapidly emerged as a leader journal in Polymer Science. The wide international readership, the quick submission and review system are also particularly interesting.

In which upcoming conferences may our readers meet you?

The European Polymer Congress (Dresden, Germany in June 2015) or 11th International Symposium on Ionic Polymerization (Bordeaux – France July 2015).

How do you spend your spare time?

Obviously, I am willing to spend more time with my family. I like cycling, and would like to dedicate more time to it.

Which profession would you choose if you were not a scientist?

I would become a teacher in middle school, it was my original idea, but I met excellent professors in the University and they have opened my mind to research.


Photoredox catalysis using a new iridium complex as an efficient toolbox for radical, cationic and controlled polymerizations under soft blue to green lights

Sofia Telitel, Frederic Dumur, Siham Telitel, Olivier Soppera, Marc Lepeltier, Yohann Guillaneuf, Julien Poly, Fabrice Morlet-Savary, Philippe Fioux, Jean-Pierre Fouassier, Didier Gigmes and Jacques Lalevée

A new iridium complex (nIr) was designed and investigated as a photoinitiator catalyst for radical and cationic polymerization upon very soft irradiations (lights ranging from 457 to 532 nm). A ring-opening polymerization (ROP) of an epoxy monomer was easily promoted through the interaction between nIr and an iodonium salt (Iod) upon light. In radical polymerization, nIr can be efficient in combination with phenacyl bromide (PBr) and optionally an amine. These photoinitiating systems work according to an original oxidative cycle and a regeneration of nIr is observed. A control of the methyl methacrylate polymerization (conducted under a 462 nm light) with 1.2–1.6 polydispersity indexes was displayed. Surface modifications by direct laser write was also easily carried out for the first time through surface re-initiation experiments, i.e. the dormant species being reactivated by light in the presence of nIr; the polymer surfaces were analyzed by XPS. The chemical mechanisms were examined through laser flash photolysis, NMR, ESR and size exclusion chromatography experiments.


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an Associate Professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia).


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Prof. Anthony Convertine

Anthony studied Chemistry at Edison College in Southwest Florida before transferring to the University of Southern Mississippi where he obtained his BS and PhD in Polymer Science and Engineering.  Under the supervision of his advisor, Professor Charles McCormick, he worked on preparing water-soluble polymers by RAFT polymerization.  Following the completion of his PhD studies he moved to Seattle Washington to do a postdoc with Professor Patrick Stayton and Allan Hoffman.  During his postdoc he worked on applying RAFT synthetic methodology to develop polymeric materials for delivering biologic drugs.  Following his postdoc, he took a position as a research assistant professor in the department of BioEngineering at the University of Washington.  To date Anthony has publish almost 60 research articles and patents and developed technology that has led to the establishment of a local area start up company.

His research is focused primarily on the application of controlled free radical polymerization and thiol-ene/Michael chemistry to develop powerful new delivery technologies that will enable the realization of therapies based on intracellularly active biologic drugs. These agents have the potential to revolutionize the treatment of serious diseases such as cancer and antibiotic resistant bacteria while minimizing harmful side effects.

What was your inspiration in becoming a chemist?

I think that I have always wanted to become a chemist.  From a very early age I enjoyed mixing whatever chemicals I could find to see what would happen. When I first started college I was required to take several chemistry classes as part of the pre-pharmacy curriculum. Along the way my organic chemistry instructor, Professor Scott, really inspired me to change my major to chemistry. His lab courses were fascinating and I was really intrigued by the idea that complex organic molecules could be made to react in deliberate ways. Soon after that I took a polymer chemistry course by Professor McCormick, who would later become my PhD advisor, which really sparked my imagination and cemented my desire to be a chemist.

What was the motivation to write your Polymer Chemistry article ?

The starting point for writing this article was the desire to create a new class of drug delivery system that could combine the high drug loading capacity and well defined structure of polymer-drug conjugates with the long circulation times of nanoparticle-based systems. Controlled radical polymerization methodologies, including the versatile reversible addition–fragmentation chain transfer (RAFT) polymerization process, are rapidly moving to the forefront in construction of drug delivery vehicles. The use of RAFT polymerization from multifunctional scaffolds provided a scientifically interesting approach for preparing these materials with spatially defined biofunctional segments.

Why did you choose Polymer Chemistry to publish your work?

Polymer chemistry is quickly becoming the premier journal for publishing cutting edge polymer science research across a range of polymer-related disciplines. The editors at Polymer Chemistry do a great job of making the manuscript figures and layouts look really sharp.  We are really excited about this work and felt that Polymer Chemistry would give our manuscripts excellent visibility. The work detailed in this manuscript was conducted along side a second closely related study so it made a lot of sense to publish them together.

In which upcoming conferences may our readers meet you?

We recently presented this work at the 2014 Zing Polymer Chemistry Conference in Cancun Mexico.  We are planning to attend the 2015 BMES meeting in Tampa, Florida.

How do you spend your spare time?

The Pacific Northwest is just amazing! There are so many natural wonders here that there is always a new hike to go on or a spectacular coastline to explore. I am also an aspiring surfer and take every opportunity to head down to the California coast to catch some waves. In the summer I like to head back to my hometown in Southwest Florida to fish for redfish with my cousin.  The mangrove shorelines and grassy flats have some of the best fishing in the world and are uniquely beautiful.  During football season you can usually find me at the local pub rooting for the Seattle Seahawks.

Which profession would you choose if you were not a chemist?

Pharmacist. Medicinal compounds and their affect on the human body have always fascinated me.


Well-defined single polymer nanoparticles for the antibody-targeted delivery of chemotherapeutic agents

D. D. Lane,   D. Y. Chiu,  F. Y. Su,   S. Srinivasan,   H. B. Kern,   O. W. Press,   P. S. Stayton and   A. J. Convertine

Aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a series of linear copolymers of N,N-dimethylacrylamide (DMA) and 2-hydroxyethylacrylamide (HEAm) with narrow Đ values over a molecular weight range spanning three orders of magnitude (103 to 106 Da). Trithiocarbonate-based RAFT chain transfer agents (CTAs) were grafted onto these scaffolds using carbodiimide chemistry catalyzed with DMAP. The resultant graft chain transfer agent (gCTA) was subsequently employed to synthesize polymeric brushes with a number of important vinyl monomer classes including acrylamido, methacrylamido, and methacrylate. Brush polymerization kinetics were evaluated for the aqueous RAFT polymerization of DMA from a 10 arm gCTA. Polymeric brushes containing hydroxyl functionality were further functionalized in order to prepare 2nd generation gCTAs which were subsequently employed to prepare polymers with a brushed-brush architecture with molecular weights in excess of 106 Da. The resultant single particle nanoparticles (SNPs) were employed as drug delivery vehicles for the anthracycline-based drug doxorubicin via copolymerization of DMA with a protected carbazate monomer (bocSMA). Cell-specific targeting functionality was also introduced via copolymerization with a biotin-functional monomer (bioHEMA). Drug release of the hydrazone linked doxorubicin was evaluated as function of pH and serum and chemotherapeutic activity was evaluated in SKOV3 ovarian cancer cells.


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia), deputy director of the Australian Centre for NanoMedicine and member of Centre for Advanced Macromolecular Design.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Professor Nicola Tirelli

Nicola studied Chemistry at the University of Pisa in Italy, obtaining an MSc in organic and polymer chemistry in 1992 and a PhD in industrial chemistry  in 1996 where he worked under the supervision of Professor Francesco Ciardelli on photochromic and non-linear optically active polymers. During the last year of his PhD he moved to the ETH Zurich, where he joined the group of Ulrich W. Suter in the Department of Materials, first as a visiting researcher and then as a postdoc, focusing on thermally resistant polymers.  After a short spell at the EPF Lausanne, he returned to Zurich in 1999 as an “Oberassistent” in the group of Jeff Hubbell, where he moved into the field of biomaterials and regenerative medicine. He then joined the School of Pharmacy at the University of Manchester in 2003 as a Lecturer and was promoted to Chair in 2005. Since 2010 he has been affiliated to the School of Materials and to that of Medicine at the Institute of Inflammation and Repair. To date, Nicola has published almost 120 research papers, in addition to several reviews and patents.

From a chemical point of view, his interests mainly lie in the design of biologically responsive materials, in form functional surfaces, hydrogels and colloids (nanoparticles, micelles). From a biological perspective, his main focus is on inflammation, and specifically on the control over the inflammatory activation of leukocytes and mesenchymal cells through e.g. the use of Reactive Oxygen Species- responsive materials.

What was your inspiration in becoming a chemist?

For certain chemistry was in my blood, not in my genes though: even including distant relatives I am the only scientist in the family. Although, I cannot deny an academic background: both parents were Middle Ages historians.

Possibly the main attraction of chemistry was its two-face character; a bit like the Roman god Janus. On one side, the interface with physics that provides certainties and allows quantitative predictions; and then a more qualitative side, based on intuitions that border the artistic domain (think of chess-playing like retrosynthetic exercises of organic chemists).

What was the motivation to write your Polymer Chemistry article?

The starting point was a medical need. There are tens of thousands, possibly hundreds of thousands of individuals carrying silicone-based implants, which almost inevitably trigger foreign body reactions due to a poor interface with the host. Just think of the number of breast augmentation operations carried out every year to get an idea of the size of the problem.

The study published in Polymer Chemistry originates from the idea to develop new approaches to modify silicone surfaces, since they are very recalcitrant towards controlled chemical functionalisation.

Why did you choose Polymer Chemistry to publish your work? (DOI: 10.1039/C4PY00941J)

A mixed bag of reasons. Principally, Polymer Chemistry is a great home for the rapid publication of studies that employ well-defined polymer architectures. Additionally, this work nicely follows and concludes a first, synthesis-based paper that we published in Polymer Chemistry last year (DOI: 10.1039/C3PY00273J), therefore it just made sense to us to submit this manuscript to the same journal

In which upcoming conferences may our readers meet you?

MRS in Boston, beginning of December 2014.

How do you spend your spare time?

I always feel great in a vegetable or tree garden, ploughing and sowing for example.

I am also an erratic music listener; currently I am quite mad for the brit pop from the ‘90s, but also for baroque and XVIII century music (Corelli, Vivaldi, Bach, Albinoni, down to Mozart). Finally, I have always had a passion for photography, which – sign of the times – is now channelled mostly through my iPhone (https://www.flickr.com/photos/95411832@N05/).

Which profession would you choose if you were not a scientist?

Linguist. Always been fascinated by the structure and history of languages.



Surface modification of silicone via colloidal deposition of amphiphilic block copolymers

Polym. Chem., 2014, Advance Article, DOI: 10.1039/C4PY00941J


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Prof. Jianzhong Du

Prof. Jianzhong Du is currently leading a polymer chemistry research group at Tongji University, Shanghai, China. He received his PhD from the Institute of Chemistry, Chinese Academy of Sciences in 2004, and then moved to the University of Sheffield as a postdoctoral fellow with Steve Armes. He held an Alexander von Humboldt research fellow position in Germany in 2006 before moving to Cambridge University in 2008 where he worked as a research associate with Rachel O’Reilly. He was appointed as an ‘Eastern Scholar’ professorship in 2009 and set up his own research group at Tongji University in 2010. His research interests include the synthesis, self-assembly and applications of smart and functional polymers, with a particular interest in polymer vesicles (polymersomes). Currently, he is focusing on the synthesis of designer polymeric materials for water remediation, biocatalysis, biomacromolecules delivery, and antibacterial delivery vehicles (“armed carriers”).

Research website: http://web.tongji.edu.cn/~jzdu/English/index.html

What was your inspiration in becoming a chemist?

In my eyes my mother is a natural “chemist”. As a young child my first inspiration to become a chemist was my mother’s fantastic home-made food—Tofu and sweet malt. I enjoyed helping her harvest soya beans in the field and seeing how she made delicious Tofu for us at home. It was really exciting to witness how the yellow soya beans turned into white Tofu after drying, smashing (by me!), dispersion in boiling water, filtration (to form soya bean milk), flocculation by calcined gypsum (actually I didn’t know it was CaSO4 until I learned basic chemistry in middle school), and further filtration to remove excess water (sometimes I stood on the board on top of the Tofu to accelerate this process!). The procedure for making sweet malt at home is much more complicated than Tofu but I mastered it before the age of ten. Those traditional Chinese food technologies have thousands of years of history but are full of principles from modern chemistry. My mother carried out those complicated “chemical reactions” based on experience (no measuring tools needed). It was a task full of fun and curiosity for a young boy to participate in. At that time I didn’t know any chemical principles but could see the excellent “results” achieved by my mother. After learning chemistry, I gradually understood why gypsum should be calcined before adding it to the soya bean milk, how Ca2+ interacts with protein to form Tofu, and the magic power of green malt in making sweets starting from rice. I think it is the everyday chemistry in my childhood that inspired me to become a chemist.

What was the motivation to write your Polymer Chemistry article? ( DOI: c4py00501e)

Our group has an active program in the synthesis and self-assembly of homopolymers. Compared with well-investigated block copolymers, homopolymers have been considered as a non-ideal building block for self-assembly due to their fuzzy boundary between hydrophobic and hydrophilic moieties. However, we think this unique fuzzy boundary may provide some new opportunities in both self-assembly mechanisms and preparation of functional nanomaterials. Furthermore, it is a challenge to self-assemble hydrophilic homopolymers in pure water into nanostructures. Therefore, we incorporated one terminal alkynyl group into hydrophilic homopolymers to drive their unusual self-assembly in aqueous solution to form a range of nanostructures such as multicompartment vesicles, spherical compound micelles and flower-like complex particles.

Why did you choose Polymer Chemistry to publish your work?

Polymer Chemistry is an excellent forum for scientists working in a wide range of sectors, especially for polymer chemists. More and more people are reading this journal. The editorial and publishing teams are well-organised and the dissemination time is short.

In which upcoming conferences may our readers meet you?

National Congress of Chinese Chemical Society 2014 in Beijing and Macro 2014 in Thailand

How do you spend your spare time?

I have an eight year old son who is learning piano and badminton. So in my spare time, I am his piano and badminton training partner. My hobbies include Chinese traditional literature, jogging and cooking.

Which profession would you choose if you were not a scientist?

If not a chemist I would be a writer or a network engineer.


Read Jianzhong Du’s latest paper:

How does a tiny terminal alkynyl end group drive fully hydrophilic homopolymers to self-assemble into multicompartment vesicles and flower-like complex particles?

Polym. Chem., 2014,5, 5077-5088, DOI: 10.1039/C4PY00501E


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Dr Elodie Bourgeat-Lami

Dr. Elodie Bourgeat-Lami graduated in 1988 from the National School of Chemistry of Mulhouse, France, and received a Masters degree in Organic Chemistry from the University of Haute Alsace. She obtained her PhD degree in 1991 from the University of Montpellier II, Sciences et Techniques du Languedoc, France, on the Study of the Physicochemical and Catalytic Properties of Zeolite Beta. Following her doctorate, she joined CNRS as a junior scientist. Currently, she is CNRS research director at the Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2) located at the Ecole Supérieure de Chimie Physique Electronique de Lyon (CPE) in Villeurbanne, France. Her research interests are focused on the fundamental and practical aspects involved in the synthesis of organic/inorganic colloidal materials with special emphasis on radical polymerization in dispersed media, surface functionalization of mineral oxide particles and sol-gel chemistry. Her research also includes activities on the synthesis of novel hybrid macromolecular architectures through controlled radical polymerization (CRP) and on the implementation of CRP techniques in aqueous dispersed media for the design of novel hybrid functional colloids for various types of applications.

What was your inspiration in becoming a chemist?

Being a chemist was not a vocation I initially intended but rather a decision that imposed itself incidentally. However the idea of being a researcher always appealed to me and I remember specifically having mentioned it as something I wanted to do while I was completing my PhD dissertation. Things then really kicked off for me and I have been truly lucky. Research is lot more than a vocation, it is a passion!

What was the motivation to write your Polymer Chemistry article?

RAFT polymerization has received increasing attention within the past decade due to the versatility, simplicity and robustness of this technique. Quite recently, RAFT has been extended to the elaboration of organic/inorganic hybrid materials, notably in aqueous dispersed media. The reported strategies mainly aim at forming an encapsulating polymer shell around inorganic particles and so far little attention has been paid to the living character of the polymerization. This work follows our previous study on the encapsulation of CeO2 particles via this technique (Zgheib et al. Polymer Chemistry 2013, 4, 607), and was intended to demonstrate the benefits of this macroRAFT-mediated process to control the growth of organic monomers in ab initio emulsion polymerization systems and attain particle morphologies that are otherwise difficult to achieve. It is part of a larger collaborative research project currently under way in our laboratory, dedicated to the synthesis of organic/inorganic anisotropic particles using this strategy.

Why did you choose Polymer Chemistry to publish your work? (DOI: 10.1039/C4PY00362D)

Polymer Chemistry currently ranks as one of the most important journals for polymer science. From the beginning, it has benefited from a high impact factor, which highlights the attention that its articles receive from the scientific community. Submitting our work to reputable journals is important for us to ensure its maximum exposure within the polymer world and to hopefully encourage further breakthroughs in the area.

In which upcoming conferences may our readers meet you?

I will very likely attend the fourth international conference on multifunctional hybrids and nanomaterials in Sitges (Spain) (March 9-13, 2015). This conference takes place every two years and is a highlight for everyone working on hybrid materials.

How do you spend your spare time?

I love traveling, hiking and exploring the world. One of my favorite hobbies is taking photos and capturing the magic of wonderful places and moments surrounded by family and friends. I also love sports, decorating my house by mixing traditional and modern styles, and spending long periods of time in the stillness of nature to energize myself.

Which profession would you choose if you were not a scientist?

When I was 18, I wanted to be a lawyer or an architect. As a researcher, I often have the opportunity to write or evaluate projects and defend them like a lawyer. In those moments, I can freely express my advocacy skills! The chemist, as the architect of matter, can design and create very complex structures. Creating novel nanoparticles or complex colloidal systems as building blocks for new materials and functions is not like building a house but one can certainly find some analogies…


Read Elodie’s latest paper:

Synthesis of multi-hollow clay-armored latexes by surfactant-free emulsion polymerization of styrene mediated by poly(ethylene oxide)-based macroRAFT/Laponite complexes

Thiago Rodrigues Guimarães, Thaissa de Camargo Chaparro, Franck D’Agosto, Muriel Lansalot, Amilton Martins Dos Santos and  Elodie Bourgeat-Lami

Polym. Chem., 2014, Advance Article, DOI: 10.1039/C4PY00362D

Abstract: This paper reports the surfactant-free emulsion polymerization of styrene mediated by a trithiocarbonate poly(ethylene oxide)-based macromolecular RAFT agent  in the presence of Laponite clay platelets.



Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an Associate Professor, an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia), member of CAMD and deputy director of the Australian Centre for NanoMedicine (ACN).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Fluorescent PEGylation agent by a thiolactone-based one-pot reaction

One pot preparation of fluorescent PEGylated proteins by a thiolactone reaction to be used in theranostic applications has been reported by Zhao et al.

Theranostic combinations usually contain an imaging, a therapeutic and a cloaking component to simultaneously fulfil diagnostic and therapeutic functions. Using upgraded PEGylation technology, a straightforward one-pot strategy based on thiolactone ring-opening has been developed to facilely synthesize a multifunctional PEGylation agent, fluorescent protein-reactive poly(ethylene glycol) (PEG), which can subsequently react with a model therapeutic protein to form a fluorescent PEGylated protein as a model of sophisticated theranostic combinations.

Fluorescent PEGylation agent by a thiolactone-based one-pot reaction: a new strategy for theranostic combinations by Yuan Zhao, Bin Yang, Yaling Zhang, Shiqi Wang, Changkui Fu, Yen Wei and   Lei Tao Polym. Chem., 2014,5, 6656-6661

Remzi Becer is a web-writer and advisory board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Jürgen Liebscher

Professor Jürgen Liebscher graduated from Technical University Dresden, Germany where he also obtained his PhD and habilitation (1977).  From 1979 till 1982 he held the position of Associate Professor at Addis Ababa University, Ethiopia and joined the Department of Chemistry, Humboldt-University Berlin later on, where he is professor of organic chemistry. Since 2010 he has been Senior Researcher I and project leader at the National Institute for Research and Development of Isotopic and Molecular Technologies (IN CDTIM) in Cluj-Napoca, Romania and Assoc. Professor at Babes Bolyai University Cluj-Napoca, Faculty of Chemistry and Chemical Engineering. His research interests are widespread ranging from organic synthesis, bioorganic chemistry (nucleic acid-lipid conjugates, amino acids), catalysis, peroxide chemistry, heterocycles to pharmaceutically active compounds. For 10 years he has mainly been involved in the field of materials, i. e. magnetic core-shell nanoparticles, where he entered polymer chemistry, in particular polymers with functional groups for various applications (catalysis, biological recognition, separation, drug transport and delivery).

Links to his research groups are:  http://www.itim-cj.ro/~liebscher/ (and before at Humboldt-University Berlin:  http://fakultaeten.hu-berlin.de/mnf1/mitarbeiter/4125.)

What was your inspiration in becoming a chemist?

I had an excellent chemistry teacher (Erhard Matthes) at high school in Freital, Germany, who made me highly interested in this field. I still remember some highlights (tasting synthetic urea, distillation of alcoholic drinks, where half of the class was tipsy before we even started the experiment, explosion of phosphorous-perchlorate mixture, preparation and investigations of simple polymers). He is now 91 years old and a dear friend of mine with whom I still enjoy exciting discussions during our visits. I like chemistry because of its interaction of practical experiments with theoretical backgrounds. It is exciting to have an idea, to go to the laboratory and get it verified experimentally. Because most of the ideas do not work, it makes the final success even more attractive. Chemistry is also interesting to me because of its potential of practical application, to find something that is useful in our society. In this respect, interdisciplinary research is essential and challenging. I learned a lot and shaped my scientific profile much by such collaborations as I learned from lecturing students in advanced organic chemistry courses.

What was the motivation to write your Polymer Chemistry article?

Our group got new insight into the structure of polydopamine, a material which after its invention by Messersmith et al. in 2007 is in the focus of contemporary research. We succeeded to provide experimental proof by spectroscopic methods that this material contains primary amino groups, which hitherto were not exploited for interesting synthetic modifications. Recently we found that polydopamine even acts as an organocatalyst, i.e. it is not an innocent polymer. As we learned from the responce of reviewers to our publication manuscripts not everybody shared our opinion. The successful diazo transfer reaction to dopamine reported in our Polymer Chemistry article is further unambiguous experimental proof for the existence of primary amino groups in polydopamine. In addition, it opens a way to link a variety of interesting functions (catalytic, biological, complex forming) to polydopamine via click chemistry (CuAAC). It further allows Janus like systems with at least two different functions connected to polydopamine.

Why did you choose Polymer Chemistry to publish your work?

Polymer Chemistry is a journal of high quality. It attracts a wide readership by covering chemistry and the polymer field. We find that scientists who are interested in our results will be reached by this journal. The time between submitting the manuscript and receiving the decision about its acceptance is usually very short thanks to the well organized editorial and production team.

In which upcoming conferences may our readers meet you?

4th International Conference on Multifunctional, Hybrid and Nanomaterials, March 2015, Sitges (near Barcelona), Spain.

How do you spend your spare time?

I dedicate most of my free time to my 1 year old son. When he gets a bit older I will return to my hobbies such as enjoying nature, hiking, biking and classical concerts.

Which profession would you choose if you were not a chemist?

It is hard for me to imagine another profession which would give me so much satisfaction. Maybe, I would choose biochemistry, biology or eventually medicine.


Read Jürgen’s latest paper:

Diazo transfer at polydopamine – a new way to functionalization

Polym. Chem., 2014, Advance Article, DOI: 10.1039/C4PY00670D


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)