Archive for May, 2018

Polymer Chemistry welcomes new Associate Editors Tanja Junkers and Jeremiah Johnson

We are delighted to welcome Professor Tanja Junkers (Monash University) and Professor Jeremiah A. Johnson (MIT) as Associate Editors for Polymer Chemistry!

 

Tanja JunkersProfessor Tanja Junkers studied chemistry and graduated with a PhD in physical chemistry from Göttingen University. In January 2018 she became full professor at Monash University in Melbourne, she remains guest professor at Hasselt University and her group is currently active at both locations.

Her main research interests are precision polymer synthesis, use of continuous flow chemistry approaches, light-induced chemistries, polymer surface modification and investigations on kinetics and mechanisms of radical reactions. To find out more about her research read some of her recent publications below!

Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow
Maarten Rubens,  Phanumat Latsrisaeng  and  Tanja Junkers
Polym. Chem., 2017,8, 6496-6505

RAFT multiblock reactor telescoping: from monomers to tetrablock copolymers in a continuous multistage reactor cascade
Evelien Baeten,  Joris J. Haven  and  Tanja Junkers
Polym. Chem., 2017,8, 3815-3824

 

 

Jeremiah Johnson
Professor Jeremiah Johnson is now an Associate Professor in the Department of Chemistry at MIT. He was previously an Editorial Board member for Polymer Chemistry.

His research focuses on researching molecular design in three primary areas: nano-scale materials synthesis, macro-scale materials synthesis, and development of new chemical methods for modifying interfaces between bulk and nanoscale objects (surface chemistry). The tools of traditional organic and organometallic synthesis, synthetic polymer chemistry, photochemistry, surface science, and biopolymer engineering are combined to realize the design of target materials. To find out more about his research read some of his publications below!

Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques
Mao Chen  and  Jeremiah A. Johnson
Chem. Commun., 2015,51, 6742-6745

Tailoring the structure of polymer networks with iniferter-mediated photo-growth
Awaneesh Singh,  Olga Kuksenok,  Jeremiah A. Johnson  and  Anna C. Balazs
Polym. Chem., 2016,7, 2955-2964

 

As Polymer Chemistry Associate Editors, Tanja and Jeremiah will be handling submissions to the journal. Why not submit your next paper to their Editorial Office?

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: Luminescent color tuning with polymer films composed of boron diiminate conjugated copolymers by changing the connection points to comonomers

The development of “element-block polymers” (defined as a minimum functional unit composed of heteroatoms) and the exploration of controlled methods for their electronic properties is crucial to design new tactics for advanced optical materials. Chujo, Tanaka and co-workers significantly contributed to this direction by developing a new concept for controlling the solid-state luminescence properties of polymers without changing the chemical components. This was achieved by synthesizing a series of alternative copolymers composed of boron diiminate with variable connection points to the comonomer units. The optical measurements revealed that the polymers possessed aggregation-induced emission (AIE) properties originating from boron diiminate. Importantly, the emission colour was varied from green to orange by altering the connection points in the film samples. Careful mechanistic studies suggested that the electron-donating and accepting abilities of the boron diiminate unit can be switched by selecting the connection points. As a result, the chain transfer character in the emission properties of the polymers was changed. Further theoretical investigations proposed that boron diiminate acts as a strong electron-acceptor in the excited state when the comonomers were connected to either one or both of the phenyl groups on the nitrogen atoms. On the contrary, when the comonomers were linked at the phenyl groups on the carbon atoms, a much weaker electron-donating property was induced. These findings pave the way for the design of advanced polymeric materials with precision function tunability without changing the chemical components.

Luminescent color tuning with polymer films composed of boron diiminate conjugated copolymers by changing the connection points to comonomers

 

Tips/comments directly from the authors:  

  1. Conventional conjugated polymers can show emission only in solution, meanwhile these polymers can present intense emission even in the film. Solid-state luminescent properties were originated from AIE ability of the boron complex.
  2. Usually, drastic changes in chemical structures are essential for colour regulation of conjugated polymers. In this boron complex, originating from significant localization of highest occupied molecular orbitals in the boron complex, optical properties can be readily modulated by altering connecting points. Therefore, various types of luminescent materials can be obtained with the same chemical components.
  3. The monomers and polymers can be obtained through the several synthetic steps without special techniques. The intermediates and products showed high stability under ambient conditions. The purification for the polymers was simply performed with re-precipitation, and pure materials having good film-formability were successfully obtained.

Luminescent color tuning with polymer films composed of boron diiminate conjugated copolymers by changing the connection points to comonomers, Polym. Chem., 2018, 9, 1942-1946, DOI: 10.1039/C8PY00283E

This paper is free to read until 30 May

About the web writer

AthinaDr. Athina Anastasaki is a Web Writer for Polymer Chemistry. She is currently a Global Marie Curie Fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please, visit this link for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)