Archive for February, 2016

Polymer Chemistry welcomes new Associate Editor Hong Chen and new Advisory Board members!

We are delighted to welcome Professor Hong Chen (Soochow University, China) to the PolymerChemistry Editorial Board as an Associate Editor, as well as our new Advisory Board members.

Leading the Macromolecules and Biointerface Lab (MacBio), a key laboratory at Soochow University, Hong’s research interests include surface modification and functionalisation of biomaterials, interactions between biomaterials and proteins or cells, the hemocompatibility of biomaterials, and biological detection.

An experienced editor, Hong was previously a member of the Polymer Chemistry Advisory Board. She has made a significant contribution to the field and to the journal, and we are very excited to have her take a leading role in the Polymer Chemistry team!

As a Polymer Chemistry Associate Editor, Hong will be handling submissions to the journal. Why not submit your next paper to her Editorial Office?

To find out more about Hong’s research, take a look at her recent Polymer Chemistry papers:

Efficient cancer cell capturing SiNWAs prepared via surface-initiated SET-LRP and click chemistry
Lulu Xue, Zhonglin Lyu, Yafei Luan, Xinhong Xiong, Jingjing Pan, Gaojian Chen and Hong Chen
Polym. Chem., 2015, 6, 3708-3715

Facile synthesis, sequence-tuned thermoresponsive behaviours and reaction-induced reorganization of water-soluble keto-polymers
Xianghua Tang, Jie Han, Zhengguang Zhu, Xinhua Lu, Hong Chen and Yuanli Cai
Polym. Chem., 2014, 5, 4115-4123

Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena
Dan Li, Qing Zheng, Yanwei Wang and Hong Chen
Polym. Chem., 2014, 5, 14-24

We also warmly welcome our new Advisory Board members to the Polymer Chemistry team:

  • Matthew Becker, University of Akron, USA
  • Xuesi Chen, Chinese Academy of Sciences, China
  • Didier Gigmes, Aix-Marseilles Université, CNRS, France
  • Sophie Guillaume, Institut des Sciences Chimiques de Rennes, France
  • Thomas Junkers, Hasselt University, Belgium
  • Toyoji Kakuchi, Hokkaido University, Japan
  • Jacques Lalevée, Institut de Science des Matériaux de Mulhouse, France
  • Guey-Sheng Liou, National Taiwan University, Taiwan
  • Ravin Narain, University of Alberta, Canada
  • Felix Schacher, Friedrich-Schiller-University Jena, Germany
  • Lei Tao, Tsinghua University, China
  • Yusuf Yagci, Istanbul Technical University, Turkey

The full Polymer Chemistry team can be found on our website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the month: pH-Sensitive nanogates based on poly(L-histidine) for controlled drug release from mesoporous silica nanoparticles.

Bilalis et al. report the design and synthesis of novel pH-sensitive nanogates based on poly(L-histidine) from mesoporous silica nanoparticles.


The development of novel drug delivery materials necessitates the combination of the knowledge from different scientific fields, including organic and inorganic chemistry. Among the wide range of hybrid organic/inorganic materials, mesoporous silica nanoparticles (MSNs) have attracted considerable attention thanks to their unique characteristics such as high surface area, large specific volume, controllable pore diameter, facile surface functionalization and nontoxicity. On the other hand, polypeptide-coated silica-based systems, including poly(L-histidine) (PHis), have shown great promise in preventing untimely release of drugs and as such the combination of PHis and MSNs can provide an excellent template for the design of advanced drug delivery systems for controlled release applications. To this end, Iatrou, Bilalis and co-workers have exploited surface-initiated ring-opening polymerization (ROP) to synthesize novel pH-sensitive poly(L-histidine)-grafted mesoporous silica nanoparticles through an amino-functionalized MSN intermediate. The successful grafting of the homopolypeptide chains from the surface of MSNs was demonstrated by Fourier Transform-infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) while size exclusion chromatography (SEC) confirmed the controlled character of the polymerization. Dynamic light scattering (DLS) and zeta potential analysis were also employed to ascertain the pH-responsive nature of the polypeptide-gated MSNs. In addition, drug loading and release studies were performed in order to verify the role of the grafted PHis chains as pH-sensitive nanogates for the MSN pores utilizing the model anticancer drug doxorubicin (DOX). DOX was efficiently loaded within the nanochannels of the hybrid MSN@PHis (~90%) and the drug entrapment and release pattern were proved to be pH-dependent with exert stability at physiological pH. The combination of the positive characteristics of MSNs and poly(L-histidine) enables the described materials as promising drug nanocarriers with potential in vitro and in vivo applications.

Tips/comments directly from the authors:

  1. It is really important to strictly maintain the reported time of reaction during the synthesis of MSNs using TEOS. Longer or less time of reaction will lead to larger or smaller nanoparticles, respectively.
  2. It should be noted that the functionalization of the surface of MSNs with APTES was conducted before the removal of CTAB so as to avoid the grafting of PHis chains from the MSN nanopores.
  3. When following the reported functionalization procedure, a LiOH solution must be used in order to remove HCl traces from the amino groups of MSNs after the removal of CTAB.
  4. The loading procedure of DOX into the MSN nanopores should take place at acidic pH (3.0). In that way the maximum drug encapsulation is ensured, because the PHis nanogates are in an opened state (fully protonated and thus hydrophilic).

pH-Sensitive nanogates based on poly(L-histidine) for controlled drug release from mesoporous silica nanoparticles by P. Bilalis, L.-A. Tziveleka, S. Varlas and H. Iatrou, Polym. Chem., 2016, 7, 1475-1485, DOI: 10.1039/C5PY01841B


Dr. Athina Anastasaki is a Web Writer for Polymer Chemistry. She is currently an Elings fellow working alongside Professor Craig Hawker at the University of California, Santa Barbara (UCSB). Please, visit her webpage for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)