Archive for January, 2015

Paper of the week: The power of one-pot: a hexa-component system containing π–π stacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes

Yang et al. have developed a one pot approach to prepare polymer-carbon nanotube conjugates.

A hexa-component system has been successfully developed for simple polymer conjugation on carbon nanotubes. The well-known Ugi reaction has been recognized as a multicomponent click (MCC) reaction to efficiently collaborate with π–π stacking and RAFT polymerization to construct this delicate one-pot system. The CNT–(co)polymer composites inherit the properties of the conjugated polymers and can be well dispersed in both organic and aqueous solvents. As a simple and efficient method, this one-pot system might have the potential to become a general approach to prepare carbon-based composites.

The power of one-pot: a hexa-component system containing π–π stacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes by Bin Yang, Yuan Zhao, Xu Ren, Xiaoyong Zhang, Changkui Fu, Yaling Zhang, Yen Wei and Lei Tao, Polym. Chem., 2015,6, 509-513.

Remzi Becer is a web-writer and Advisory Board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

35th Australasian Polymer Symposium (35APS)

We are pleased to announce the 35th Australasian Polymer Symposium which will be held at the QT Hotel, Gold Coast, Australia, on 12-15th July 2015.

Browse the programme

The programme is live so take a look now. Keynote speakers include: Professor David Haddleton, Dr Elodie Bourgeat-Lami and Professor Zhibo Li.

Submit your abstract

There are a range of themes covering many areas of polymer research running throughout the symposium, so check out the themes and submit your abstract now.

Register

Registration is NOW OPEN. Register before 13th March for the Early Bird discount. Sign up for what is sure to be another stimulating polymer science forum in 2015.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Precise one-pot synthesis of fully conjugated end-functionalized star polymers containing poly(fluorene-2,7-vinylene) (PFV) arms

Nomura et al. present the one-pot synthesis of star shaped conjugated polymers.

A facile, precise one-pot synthesis of end-functionalized star (triarm) polymers consisting of poly(9,9-di-n-octylfluorene-2,7-vinylene)s (PFVs), the triblock copolymers [by incorporation of tri(2,5-dialkoxy-1,4-phenylene vinylene) or terthiophene units as the middle segment], has been achieved by olefin metathesis followed by Wittig-type coupling. Effects of the PFV conjugation length, the middle segment and the end groups on the emission properties have been studied.

Precise one-pot synthesis of fully conjugated end-functionalized star polymers containing poly(fluorene-2,7-vinylene) (PFV) arms by Kotohiro Nomura, Tahmina Haque, Tomohiro Miwata, Akiko Inagaki and Kenji Takamizu Polym. Chem., 2015,6, 380-388

Remzi Becer is a web-writer and advisory board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: Amphiphilic/fluorous random copolymers as a new class of non-cytotoxic polymeric materials for protein conjugation

Koda et al have developed amphiphilic/fluorous random copolymers bearing poly(ethylene glycol) (PEG) chains and perfluorinated alkane pendants as novel non-cytotoxic polymers for protein conjugation.

Three kinds of random copolymers with different initiating terminals (carboxylic acid, pyridyl disulfide, and N-hydroxysuccinimide ester) were prepared by reversible addition–fragmentation chain transfer (RAFT) copolymerization of a PEG methyl ether methacrylate and a perfluorinated alkane methacrylate with the corresponding functional chain transfer agents. All of the polymers were soluble in water to form nanostructures with perfluorinated compartments via fluorous interaction: large aggregates from the intermolecular multi-chain association and compact unimer micelles from the intramolecular single-chain folding. Such a PEGylated and perfluorinated random copolymer was non-cytotoxic to NIH 3T3 mouse embryonic fibroblast cells and human umbilical vein endothelial cells (HUVECs). Additionally, a random copolymer with a pyridyl disulfide terminal was also successfully conjugated with a thiolated lysozyme.

Amphiphilic/fluorous random copolymers as a new class of non-cytotoxic polymeric materials for protein conjugation by Yuta Koda, Takaya Terashima, Mitsuo Sawamoto and  Heather D. Maynard Polym. Chem., 2015,6, 240-247.

Remzi Becer is a web-writer and advisory board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymer Chemistry Lectureship: Nominations now open

Do you know someone who deserves recognition for their contribution to the polymer field?

Now is your chance to ensure they receive the accolade they deserve.

Polymer Chemistry is pleased to announce that nominations are now being accepted for its Polymer Chemistry Lectureship 2015.  New in 2015, this award will be run annually by the journal to honour an early-stage career scientist who has made a significant contribution to the polymer field.

Qualification

To be eligible for the Polymer Chemistry Lectureship, the candidate should be in the earlier stages of their scientific career, typically within 15 years of attaining their doctorate or equivalent degree, and will have made a significant contribution to the field.

Description

The recipient of the award will be asked to present a lecture three times, one of which will be located in the home country of the recipient. The Polymer Chemistry Editorial Office will provide the sum of £1000 to the recipient for travel and accommodation costs.

The award recipient will be presented with the award at one of the three award lectures. They will also be asked to contribute a lead article to the journal and will have their work showcased on the back cover of the issue in which their article is published.

Selection

The recipient of the award will be selected and endorsed by the Polymer Chemistry Editorial Board.

Nominations

Those wishing to make a nomination should send details of the nominee, including a brief C.V. (no longer than 2 pages A4) together with a letter (no longer than 2 pages A4) supporting the nomination, to the Polymer Chemistry Editorial Office by 6th March 2015.  Self-nomination is not permitted.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Author of the Month: Professor Nicola Tirelli

Nicola studied Chemistry at the University of Pisa in Italy, obtaining an MSc in organic and polymer chemistry in 1992 and a PhD in industrial chemistry  in 1996 where he worked under the supervision of Professor Francesco Ciardelli on photochromic and non-linear optically active polymers. During the last year of his PhD he moved to the ETH Zurich, where he joined the group of Ulrich W. Suter in the Department of Materials, first as a visiting researcher and then as a postdoc, focusing on thermally resistant polymers.  After a short spell at the EPF Lausanne, he returned to Zurich in 1999 as an “Oberassistent” in the group of Jeff Hubbell, where he moved into the field of biomaterials and regenerative medicine. He then joined the School of Pharmacy at the University of Manchester in 2003 as a Lecturer and was promoted to Chair in 2005. Since 2010 he has been affiliated to the School of Materials and to that of Medicine at the Institute of Inflammation and Repair. To date, Nicola has published almost 120 research papers, in addition to several reviews and patents.

From a chemical point of view, his interests mainly lie in the design of biologically responsive materials, in form functional surfaces, hydrogels and colloids (nanoparticles, micelles). From a biological perspective, his main focus is on inflammation, and specifically on the control over the inflammatory activation of leukocytes and mesenchymal cells through e.g. the use of Reactive Oxygen Species- responsive materials.

What was your inspiration in becoming a chemist?

For certain chemistry was in my blood, not in my genes though: even including distant relatives I am the only scientist in the family. Although, I cannot deny an academic background: both parents were Middle Ages historians.

Possibly the main attraction of chemistry was its two-face character; a bit like the Roman god Janus. On one side, the interface with physics that provides certainties and allows quantitative predictions; and then a more qualitative side, based on intuitions that border the artistic domain (think of chess-playing like retrosynthetic exercises of organic chemists).

What was the motivation to write your Polymer Chemistry article?

The starting point was a medical need. There are tens of thousands, possibly hundreds of thousands of individuals carrying silicone-based implants, which almost inevitably trigger foreign body reactions due to a poor interface with the host. Just think of the number of breast augmentation operations carried out every year to get an idea of the size of the problem.

The study published in Polymer Chemistry originates from the idea to develop new approaches to modify silicone surfaces, since they are very recalcitrant towards controlled chemical functionalisation.

Why did you choose Polymer Chemistry to publish your work? (DOI: 10.1039/C4PY00941J)

A mixed bag of reasons. Principally, Polymer Chemistry is a great home for the rapid publication of studies that employ well-defined polymer architectures. Additionally, this work nicely follows and concludes a first, synthesis-based paper that we published in Polymer Chemistry last year (DOI: 10.1039/C3PY00273J), therefore it just made sense to us to submit this manuscript to the same journal

In which upcoming conferences may our readers meet you?

MRS in Boston, beginning of December 2014.

How do you spend your spare time?

I always feel great in a vegetable or tree garden, ploughing and sowing for example.

I am also an erratic music listener; currently I am quite mad for the brit pop from the ‘90s, but also for baroque and XVIII century music (Corelli, Vivaldi, Bach, Albinoni, down to Mozart). Finally, I have always had a passion for photography, which – sign of the times – is now channelled mostly through my iPhone (https://www.flickr.com/photos/95411832@N05/).

Which profession would you choose if you were not a scientist?

Linguist. Always been fascinated by the structure and history of languages.



Surface modification of silicone via colloidal deposition of amphiphilic block copolymers

Polym. Chem., 2014, Advance Article, DOI: 10.1039/C4PY00941J


Cyrille Boyer is a guest web-writer for Polymer Chemistry. He is currently an associate professor and an ARC-Future Fellow in the School of Chemical Engineering, University of New South Wales (Australia) and deputy director of the Australian Centre for NanoMedicine.


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Paper of the week: RAFT-prepared α-difunctional poly(2-vinyl-4,4-dimethylazlactone)s and their derivatives

Quek et al present the synthesis and effect of end-groups on aqueous inverse temperature solubility of these polymers

A series of five novel R-group di-functional phenyl dithiobenzoates have been prepared and utilized in the controlled reversible addition–fragmentation chain transfer (RAFT) radical polymerization of 2-vinyl-4,4-dimethylazlactone (VDMA), yielding a series of homopolymers of similar average degrees of polymerization but variable α-end group functionality. Each of the reactive polyVDMA homopolymers was reacted with four different small molecule amines: dimethylamine, diethylamine, N,N-diethylethylenediamine and tetrahydrofurfurylamine yielding a series of novel end-functional materials. The effect of the end-groups on the inverse temperature dependent aqueous solubility of the formally hydrophilic homopolymers was then measured and compared to similar materials prepared with benzylpropyltrithiocarbonate as the RAFT agent. In virtually all instances, the introduction of the twin α-end-groups resulted in overall more hydrophobic species that exhibited cloud points spanning the range 25.1–42.7 °C. Importantly, there was a strong influence on the nature of the end groups and the associated solubility characteristics with, in some cases, cloud point behaviour only being observed in polymers with twin end groups while those derived from benzylpropyltrithiocarbonate were fully soluble.

RAFT-prepared α-difunctional poly(2-vinyl-4,4-dimethylazlactone)s and their derivatives: synthesis and effect of end-groups on aqueous inverse temperature solubility by Jing Yang Quek, Xuechao Liu, Thomas P. Davis, Peter J. Roth and Andrew B. Lowe Polym. Chem., 2015,6, 118-127

Remzi Becer is a web-writer and advisory board member for Polymer Chemistry. He is currently a Senior Lecturer in Materials Science and the director of the Polymer Science and Nanotechnology masters programme at Queen Mary, University of London. Visit www.becergroup.com for more information.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)