Paper of the week: Carbon nanotube-incorporated polymer hydrogels

Graphical abstract: Synthesis of single-walled carbon nanotube-incorporated polymer hydrogels via click chemistry

Electrically conductive hydrogels are soft, polymeric networks that combine hydrogels’ unique properties with electroactive polymers’ inherent conductivity. With this in mind, Changsik Song and co-workers reported the design of single-walled carbon nanotubes (SWNTs) incorporated into polyvinyl alcohol (PVA) hydrogels by Cu-catalyzed azide–alkyne cycloaddition reaction. This efficient and modular reaction allowed the production of hydrogels with cross-linker molecules of various properties such as hydrophilic or hydrophobic character. Control of cross-linking density and molecular transport inside the click hydrogels was demonstrated by measuring degrees of swelling and the electrochemical diffusion coefficient of an ionic solute. In addition, incorporation of single-walled carbon nanotubes into the click hydrogels aided the growth of poly(3,4-ethylenedioxythiophene), presumably due to their enhancement of electrical conductivity. SWNT-incorporated PVA hydrogels synthesized by click chemistry may be of great interest for use as electrically conductive hydrogels in biomedical applications.

Synthesis of single-walled carbon nanotube-incorporated polymer hydrogels via click chemistry by Rebecca Eunji Lee, Jiyoung Park, Sung Gap Im and Changsik Song Polym. Chem20123, 2451-2455.

To keep up-to-date with all the latest research, sign up for the journal’s e-alerts or RSS feeds or follow Polymer Chemistryon Twitter or Facebook.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)