Author Archive

Biodistribution of gold nanoparticles designed for renal clearance

In this HOT Nanoscale article the authors report on the biodistribution of gold nanoparticles (Au@DTDTPA) after intravenous injection into healthy rats.

Gold nanoparticles have shown great potential as radiosensitisers for radiotherapy so the biodistribution of the nanoparticles in healthy tissues constitutes a crucial issue that must be addressed to guarantee the optimal use of these particles. Owing to the propensity of gold for absorbing X-ray photons, these nanoparticles behave as contrast agents for X-ray imaging. Moreover, Au@DTDTPA-Gd nanoparticles can be followed up by magnetic resonance imaging (MRI), since the organic shell, DTDTPA, is composed of polyaminocarboxylate ligands which are well known for entrapping gadolinium ions. Both complementary imaging modalities are well suited for monitoring the accumulation in a specific tissue or in a tumor. However scintigraphy appears better suited for a complete biodistribution study because of its greater sensitivity and the possibility to image the whole body for a duration that is compatible with the pharmacokinetics. The authors demonstrated that the replacement of the gadolinium ions by 99mTc and 111In ions renders the Au@DTDTPA nanoparticles suitable for the study of the biodistribution by scintigraphy. The radiolabeled gold nanoparticles (Au@DTDTPA-X, with X = 99mTc and 111In) exhibit high radiochemical purities and radiolabeling stabilities.

The tracking of the radiolabeled Au@DTDTPA nanoparticles by planar scintigraphy and single photon emission computed tomography (SPECT) after intravenous injection associated to the post-mortem analysis showed that these particles exhibit safe behavior: the nanoparticles are removed from the body essentially by renal clearance while no accumulation is observed in the organs (except those involved in the renal clearance (kidneys, bladder)). Moreover the physicochemical properties of Au@DTDTPA-X nanoparticles impede any reticuloendothelial system uptake as reflected by the low uptake by phagocyte-rich organs (liver and spleen).

The follow-up by at least three different imaging modalities (X-ray imaging, MRI, scintigraphy), the absence of undesirable accumulation and the removal by urine suggest Au@DTDTPA nanoparticles are very promising for in vivo applications, especially for image-guided radiotherapy.

Read this HOT article in full today:

The biodistribution of gold nanoparticles designed for renal clearance
Christophe Alric, Imen Miladi, David Kryza, Jacqueline Taleb, Francois Lux, Rana Bazzi, Claire Billotey, Marc Janier, Pascal Perriat, Stéphane Roux and Olivier Tillement
DOI: 10.1039/C3NR00012E

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

SERS – a potential tool for sensitive metal pollutant detection

Researchers from Spain have investigated surface enhanced Raman scattering (SERS) as a potential tool for the simultaneous detection of two metal pollutants, Co(II) and Cu(II), at ultratrace levels.

The authors functionalized silver nanoparticles with a metal ion receptor molecule, terpyridine (TPY), which is known to bind to first-row transition metal ions with high affinity.  Dithiocarbamate (DTC) is introduced to the TPY structure in order to facilitate adsorption onto the nanoparticle surface. Upon addition of metal ions, such as Co(II) and Cu(II), a conformational change takes place, which can be detected as a peak shift in the Raman spectra. This shift is unique to the ion that is conjugated to the TPY-DTC ligand, allowing the simultaneous detection of both Co(II) and Cu(II) ions, which are known to cause teratogenic or carcinogenic effects when bioaccumulated to high concentrations.

The authors demonstrate a limit of detection of 6.5 ppb and 60 ppt for Cu(II) and Co(II), respectively.  This sensitivity is significantly higher when compared to analogous techniques, such as AAS or AES, demonstrating the applicability of SERS as tool for the sensitive detection of metal ions.

by Dr Lee Barrett

Full details can be found in the Nanoscale article:

Simultaneous SERS detection of copper and cobalt at ultratrace levels

Dionysia Tsoutsi, Luca Guerrini, Jose Manuel Hermida-Ramon, Vincenzo Giannini, Luis M. Liz-Marzán, Alex Wei and Ramon A Alvarez-Puebla
DOI: 10.1039/C3NR01518A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Reversible photoswitching for molecular electronics

Scientists based in The Netherlands report a series of novel reversible photoswitches based on diarylethene embedded in a matrix of dodecanethiol on Au(111). The authors used scanning tunneling microscopy to study the effect as the “on” state appears higher than the “off” state by several Ångstroms.

Such switches are being used in the important field of molecular electronics.

Read the full details of this exciting work today:

Reversible light induced conductance switching of asymmetric diarylethenes on gold: surface and electronic studies
Arramel, Thomas C. Pijper, Tibor Kudernac, Nathalie Katsonis, Minko van der Maas, Ben L. Feringa and Bart J. van Wees
DOI: 10.1039/C3NR00832K

Table of contents image

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT Communication: ZnO nanowire based logic gates

Table of contents imageScientists working at Yonsei University in Korea have prepared 1 dimensional logic gates and static random access memory (SRAM)
circuits from single zinc oxide nanowires, in combination with Al2O3, gold and indium tin oxide.

The excellent performance of the nanowires suggests that using long single nanowires could lead to further exciting developments in the nano-electronics field.

Full details can be found in this HOT Nanoscale Communication:

Long single ZnO nanowire for logic and memory circuits: NOT, NAND, NOR gate, and SRAM
Young Tack Lee, Syed Raza Ali Raza, Pyo Jin Jeon, Ryong Ha, Heon-Jin Choib and Seongil Im
DOI: 10.1039/C3NR01015E

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoparticles for remote-controlled drug delivery

Scientists from Singapore report the development of a nanoparticle-based drug delivery vehicle that is capable of releasing drugs upon external stimuli.
They have made amphiphilic polymer coated gold nanoparticles which self-assemble into vesicles. The hydrophobic polymer on the gold nanoparticle surface can be converted to a hydrophilic polymer by UV light illumination, creating a mechanism to monitor drug release. By examining the gold nanostructure surface plasmon band shifts (and for drugs that happen to be fluorescent), the release profile can be controlled and monitored in real time.
The team investigate the loading and photo-regulated release of the fluorescent model drug, doxorubicin (DOX), by the plasmonic vesicles. DOX as a potent anticancer drug suffers from side effects such as cardiac toxicity, and therefore drug delivery systems that allow the targeted delivery of DOX are highly desirable.

Read the full details of this HOT Nanoscale article:

Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery
Jibin Song, Zheng Fang, Chenxu Wang, Jiajing Zhou, Bo Duan, Lu Pu and Hongwei Duan
DOI: 10.1039/C3NR01350B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Controlling surface plasmons

Scientists in France report a new type of hybrid plasmonic device where there is a quantitative, reversible change in the localised surface plasmon resonance wavelength on changing the refractive index – so the plasmon resonance can be controlled. The devices could be used as temperature sensors or as switching elements for signal modulation in plasmonic nano-circuits.

Check out this exciting research today:

Synergistic switching of plasmonic resonances and molecular spin states
Khaldoun Abdul-Kader, Manuel Lopes, Carlos Bartual, Olena Kraieva, Edna Hernandez, Lionel Salmon, William Nicolazzi, Franck Carcenac, Christophe Thibault, Gábor Molnár and Azzedine Bousseksou
DOI: 10.1039/C3NR01337E

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Origami electronics for foldable devices

Researchers from Osaka University, Japan, have developed foldable nanopaper antennas by fabricating a cellulose nanofiber substrate and imprinting silver nanowires on the surface.

The authors compiled nanopaper sheets from nanofibrillated pulp fibers, without conventional high pressure processing, to produce sheets with diameters ranging from 15 to 60 nm and a high smoothness of 0.16 μm.  The nanopaper surfaces were found to be 15-80 times smoother than pulp papers – a quality required for effective electrical properties in devices.  The silver nanowires were synthesized by reducing silver nitrate in the presence of PVP in ethylene glycol.  This produced silver nanowires 100 nm in diameter with lengths of between 5-10 μm.  The nanowires were mixed with ethylene glycol to produce pastes, which were subsequently mask-printed onto the nanopaper substrate.

To test the durability of the nanopaper-silver nanowire devices, the authors folded the paper into origami cranes, which was used to power an LED light.  This demonstrated that, even with multiple folding, the nanopaper devices retain their electrical properties more consistently than folded pulp papers.  This research has demonstrated, for the first time, that durable folded nanopaper devices with printed silver nanowire antennas can be easily and reproducibly fabricated.  The authors envisage these antennas could herald a new wave of foldable electronic devices, such as those used in smart phones and laptop computers.

by Dr Lee Barrett

Read this HOT Nanoscale article in full:

Foldable nanopaper antennas for origami electronics
Masaya Nogi, Natsuki Komoda, Kanji Otsuka and Katsuaki Suganuma
DOI: 10.1039/C3NR00231D

Table of contents image

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Parallelogram shaped nanowires control light in two dimensions

Table of contents imageA novel zinc oxide microwire optical resonator with parallelogram-shaped cross section has been made by chemists based in China and Taiwan. The material can effectively control light in two dimensions, and could play the part of a building block in the development of optoelectronic devices.

Read this HOT Nanoscale communication today:

Optical modulation of ZnO microwire optical resonators with a parallelogram cross-section
Yang Liu, Hongxing Dong, Shulin Sun, Wenhui Liu, Jinxin Zhan, Zhanghai Chen, Jun Wang and Long Zhang
DOI: 10.1039/C3NR00700F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nanoparticle system for simultaneous drug delivery and biomedical imaging

Huanxin Cai and Ping Yao, from Fudan University, have developed a facile and green approach for the synthesis of gold nanoparticle conjugates prepared from a lys-dex nangel, comprising a lysozyme core with a dextran shell. The Au@lys-dex nangels loaded with doxorubicin show the same antitumour activity as free doxorubicin, showing the potential of the nanogels for drug delivery applications.

Table of contents imageThe lys-dex conjugates were spherical in shape with a hydrodynamic radius of 200 nm.  Due to the stability of the lys-dex nanogels against changes in pH and ionic strength, in addition to the net positive charge of the lys core produced at pH < 10.7, the nanogels are a suitable substrate for the synthesis of gold nanoparticles.

By mixing the lys-dex nanogel and chloroauric acid at pH 4, gold nanoparticles can be synthesized by inducing the reduction of Au3+ using UV photo-irradiation.  The synthesis process was monitored by UV-Vis spectroscopy indicating that 2 hours of UV-irradiation is sufficient to produce gold nanoparticles with a surface plasmon band centered at 536 nm.   The authors report that the gold nanoparticle morphology can be controlled by altering the pH of the reaction, thereby leading to nanoparticles with sizes of 11, 8 and 4 nm at pH 2, 4 and 6, respectively.

Due to the plasmonic properties of the nanoparticles, the Au@lys-dex nanogels can also be used as contrast agents for optical microscopy imaging.  The authors have therefore devised a nanoparticle system for simultaneous drug delivery and biomedical imaging applications.

by Dr Lee Barrett

Read the full details of this HOT Nanoscale paper today:

In situ preparation of gold nanoparticle-loaded lysozyme–dextran nanogels and applications for cell imaging and drug delivery
Huanxin Cai and Ping Yao
DOI: 10.1039/C3NR00178D

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Making temperature sensitive porous nanolayers

A method of manufacturing porous nanolayers using temperature sensitive substrates has been developed by scientists working in Germany.

Traditionally such materials are made using flame spray pyrolysis (FSP), but this process is limited by the thermal sensitivity of the substrate onto which the nanoparticles are coated. Furthermore the mechanical stability of the layers is often weak in liquid environments.

The new process involves separating the pyrolysis step from the introduction of the final substrate material. In stage one the nanoparticles (eg titanium dioxide) are coated onto an initial substrate, using FSP, to create an intermediate porous nanolayer material. In stage two a new substrate is applied to the intermediate material to create a ‘nanoparticle sandwich’, which is passed through rollers under pressure and at low temperature. The nanoparticle layer transfers to the new substrate to yield the final material.

The technique produces materials that have superior mechanical stability, and opens up the possibility of using different substrates, such as polypropylene foil.

Read this HOT Nanoscale article today:

Transfer of highly porous nanoparticle layers to various substrates through mechanical compression
Sven Oliver Schopf, Samir Salameh and Lutz Mädler
DOI: 10.1039/C3NR34235B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)