Author Archive

Improved wound care glue from metal oxide nanoparticles

The need for tough, easily producible, tissue adhesives for medical applications is significant, and much recent research has focused on this expanding field. Surgical and wound care complications remain a major cause of post-operative mortality. Materials used for these applications need to withstand various mechanical deformations and movements while remaining strongly attached to the intended tissue.

A simple route to tissue adhesives has recently been described involving silica nanoparticles acting as physical adhesive layer between tissues. New research from the Hermann group at the Swiss Federal Laboratories for Materials Science and Technology has expanded upon this concept with a new article published in Nanoscale. The researchers produce a library of inorganic oxide nanoparticles using a scalable and sterile flame spray pyrolysis method. The particles are then used study how different combinations of nanoparticles affect performance as tissue adhesives and also the toxicity of the resulting tissue adhesive materials.

An optimal composition of a mixture of bioglass and silica nanoparticles were found to have exceptionally strong procoagulant and adhesive properties whilst also maintaining superior cyto-compatibility. This highly modular synthetic method paves the way for use of metal oxide nanoparticles as bioactive adhesives in a range of exciting surgical and regenerative medicine applications.

 

Fig. 1. Inorganic nanoparticles and their use as tissue adhesives

Read the article:
Martin T. Matter, Fabian Starsich, Marco Galli, Markus Hilber, Andrea A. Schlegel, Sergio Bertazzo, Sotiris E. Pratsinis and Inge K. Herrmann
Nanoscale, 2017, Advance Article, DOI: 10.1039/C7NR01176H

 

Alexander Cook is a guest web writer for the RSC journal blogs. He is a PhD researcher in the Perrier group at the University of Warwick, focusing on polymer materials and their use in various applications. Follow him on twitter @alexcook222

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Micromotors navigate tiny biochemical lab

Micromotors have been used for a wide range of applications, from hydrogen generation and bacteria capture, and now scientists from the University of Alcalá, Spain have utilised these useful micromachines in a lab-on-a-chip device. The little machines can navigate through the confined space to carry out fluorescence-based detection and even transport cargo in a complex medium that simulates blood plasma. There is no need for complex valves or pumps, just a simple magnetic field.

Described by nanobioelectronics and nanomotor experts as “a wonderful example” of carbon-based rockets for active transport showcasing a “potential breakthrough” as one of “very few practical applications”. Of particular importance is the incorporation of an anti-fouling layer that allows the micromotors to travel through complex mediums without degrading. This has the potential to overcome on of the key limiting factors in the advancement of biomedical applications in this field.

Read the full article in Chemistry World.

 

R. Maria-Hormigos, B. Jurado-Sánchez and A. Escarpa
Nanoscale, 2017,9, 6286-6290
DOI: 10.1039/C6NR09750B, Communicaton
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Conference promotion – ANM 2017

Nanoscale and Nanoscale Horizons are proud to support ANM 2017  a conference series on Advanced Nanomaterials, along Energy & Environmental Science, Molecular Systems Design & Engineering, and Sustainable Energy & Fuels. This conference series will take place at University of Aveiro, Portugal on 19 – 21 July 2017, and comprises the following symposia:

  • 9th International Conference on Advanced Nanomaterials
  • 3rd International Conference on Advanced Graphene Materials
  • 2nd International Conference on Advanced Magnetic and Spintronics Materials
  • 1st International Conference on Advanced Polymer Materials and Nanocomposites
  • A session dedicated to Hydrogen Energy

Poster abstract submission ends on 20 June and the registration deadline is 10 July! Visit the website for a full list of topics and speakers.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Prize Winner: Professor Xiao Cheng Zen

Congratulations to our Associate Editor, Professor Xiao Cheng Zen, who has been awarded the Royal Society of Chemistry Surfaces and Interfaces Award for 2017 for his development of a unified theory to understand the relationship between structure and properties of nanoscale materials at surfaces and interfaces.

 

Xiao Cheng Zeng is currently at the University of Nebraska-Lincoln, where his main research interests cover the physical chemistry of confined water, ice, and ice hydrate in nanoscale; ions and radicals at air/water interfaces; heterogeneous catalysis on supported gold clusters; and computer-aided design of low-dimensional materials including liganded gold clusters and perovskite solar-cell materials.

He is the recipient of many awards, and is a fellow of the American Association for the Advancement of Science (AAAS), the American Physical Society (APS), and the Royal Society of Chemistry (FRSC). He has published 475+ articles in refereed journals (Google Scholar h-index: 70; citations 17000+). Four articles were featured in Chemistry World (RSC) and ten papers were featured in Chemical & Engineering News (ACS).

 

 

Professor Xiao Cheng Zen has been an Associate Editor for Nanoscale since 2012, and we congratulate him for his success!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New crosslinked conjugated polymers in quantum dot LEDs

A new photo-induced polymer crosslinking strategy has been used to produce optoelectronic devices with improved performance by a group of Chinese researchers. This has allowed quantum dot LED devices to be fabricated on flexible plastic substrates as the scientists can avoid high temperature thermal annealing.

Developed at Soochow University and Shanghai Jiaotong University, the researchers believe this crosslinking strategy provides an excellent general method for improving film quality in solution-processed multi-layer LEDs and optoelectronic devices.

The improved efficiency of the devices has been ascribed to superior film surface morphology of the device layers, as the range of non-orthogonal solvents able to be used for solution processing is greatly broadened due to layer crosslinking. The device is based on a hole transport layer of conjugated polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4’-(N-(4-butylphenyl)))] (TFB), which is crosslinked with a bifunctional benzophenone, with the crosslinked hole transport layer device giving a 2 times higher efficiency than the device without layer crosslinking.

Fig. 1. New photochemical crosslinking method enables fabrication of novel all-solution-processed multilayer optoelectronic devices to improve device performance using both orthogonal and non-orthogonal solvents.

 

Read the article:

Crosslinked conjugated polymers as hole transport layers in high-performance quantum dot light-emitting diodes

Yatao Zou, Ying Liu, Muyang Ban, Qi Huang, Teng Sun, Qing Zhang,* Tao Song* and Baoquan Sun*

Nanoscale Horizons, 2017, DOI: 10.1039/C6NH00217J

 

Alexander Cook is a guest web writer for the RSC journal blogs. He is a PhD researcher in the Perrier group at the University of Warwick, focusing on polymer materials and their use in various applications. Follow him on twitter @alexcook222

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)