Congratulations to the poster prize winners at MC13

Congratulations to the winners of the Materials Horizons poster prize at the 13th International Conference on Materials Chemistry (MC13). The poster prize was awarded to Abbas, Sara; Buchaca-Domingo, Ester; El-Tall, Omar; Kim, Taesoo; Caraveo, Alfonso; Stingelin, Natalie; and Amassian Aram from King Abdullah University of Science and Technology (KAUST), Saudi Arabia for their poster entitled Solution-Processed Smart Window Platform Based on Plasmonic Electrochromic and Photonic Coatings.

 

Other prizes were awarded from  Journal of Materials Chemistry B , Molecular Systems Design & Engineering, Soft MatterBiomaterials, and more!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons

Article written by Dr Mengye Wang

Conventional lithium rechargeable batteries contain solid electrodes and liquid electrolytes, which can have potential security risks concerning volatilization, flammability and explosion. Because of the widely acknowledged safety benefits of solid electrolytes over their liquid counterparts, the application of solid-state batteries has been widely envisioned. Recently, a review of solid-state electrolytes for lithium batteries has been published in Materials Horizons, by Renjie Chen’s group at Beijing Institute of Technology.
They discuss existing solid electrolytes including inorganic solid electrolytes, solid polymer electrolytes, and composite solid electrolytes, and present conductive mechanisms of these conductors in detail. However, large-scale implementation of all-solid-state batteries is still some way off because unsolved severe limitations have been encountered. This review systematically summarizes and visually displays the current limitations of solid electrolytes and efforts to overcome them with the objective of large-scale development. Given that the issues limiting solid electrolytes mainly derive from their structure activity relationships, so the main part has been divided into four sections: bulk, surface, interface and grain boundary.
Though this review, Professor Renjie Chen intends to convey the messages that the field of solid-state lithium batteries is multidisciplinary and joint experimental, computational and practical investigations could provide comprehensive insight into solid electrolytes. If the current limitations are broken though, it is hoped that this field will advance to large-scale development in the near future.

Categories of the existing solid electrolytes

Read the full article here:
The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons
Renjie Chen, Wenjie Qu, Xing Guo, Li Li and Feng Wu
Mater. Horiz., 2016, 3, 487-516

 

Mengye Wang is a member of the Community Board for Materials Horizons. Currently, she works as a postdoctoral fellow in the Department of Applied Physics at The Hong Kong Polytechnic University. She has a keen interest in advanced materials for environmental and energy applications, including photocatalysis and electrocatalysis.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A skin-like sensor based on a stimuli-responsive hydrogel

Article written by Dr Mengye Wang

A novel type of multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel has been reported in a new article, published in Materials Horizons. This study presents a simple strategy to transduce the volume phase transition behaviors of stimuli-responsive hydrogels into reliable electrical signals, which might be helpful to develop biocompatible skin-like sensors based on hydrogels with a wide range of sensory capabilities.

 

The strategy, developed by Professor Peiyi Wu and colleagues at Fudan University,  is based on two key points:

  1. Capacitive sensors in a parallel-plate configuration are sensitive to changes of the conductive area, thus allowing area changes (corresponding to volume phase transition behaviors) of stimuli-responsive ion-conducting hydrogels to be transduced into capacitance signals.
  2. Microstructuring the conductive layers with a sub-millimeter resolution enhances the relative area changes upon stimulation, thereby magnifying the capacitive response signals.

A thermo-responsive hydrogel was used in this work and the microstructure was fabricated by an advanced 3D printing technique. Wu’s group demonstrated that the microstructured hydrogel effectively magnified the capacitive area changes upon external stimuli (i.e., temperature and pressure). The prepared skin-like sensor could sense body temperatures, gentle finger touches and finger bending motion.

 

This work not only indicates that stimuli-responsive hydrogels are promising candidates for artificially intelligent skins, but might also enrich the design of skin-like sensors for future artificial intelligence, wearable devices and human/machine inter-action applications.

 

A 3D printed thermo-responsive hydrogel is designed as a novel multifunctional skin-like sensor, which could sense body temperature, gentle finger touches and finger bending motion.

 

Read the full article here:
Zhouyue Lei, Quankang Wang and Peiyi Wu
Mater. Horiz., 2017, Advance Article

 

Mengye Wang is a member of the Community Board for Materials Horizons. Currently, she works as a postdoctoral fellow in the Department of Applied Physics at The Hong Kong Polytechnic University. She has a keen interest in advanced materials for environmental and energy applications, including photocatalysis and electrocatalysis.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Conference Promotion – GRAPCHINA 2017

Materials Horizons and Nanoscale Horizons are proud to be partnering with GRAPCHINA 2017, which takes place on 24 – 26 September 2017 at Nanjing International Exhibition Centre, China.

 

This International Graphene Global Innovation Conference has become a significant commercial and academic event that gathers approximately 2000 representatives for all stakeholders involved in graphene technologies, bringing top level speakers and delegates from the industries, NGOs and academia together with senior policy makers from the EU’s flagship program and national government.

Key speakers include:

  • Sir Andre Geim, Nobel Prize winner
  • Professor Yong Gan, Vice President of the Chinese Academy of Engineering
  • Professor Andrea C. Ferrari, Founding Director of the Cambridge Graphene Centre (and Associate Editor for Nanoscale)
  • and many more!

The conference will be divided into three parallel symposia, focusing on different topics like graphene and 2D materials frontier research, graphene-related emerging industries, graphene application in traditional industries. The symposia cover areas of fundamental research, graphene manufacturing, energy application, health and environment, sensors and communication, composites application, etc. There will also be three special forums, aiming to push international collaboration, accelerate characterization and standardization method, and promote national graphene industry bases. The topics center on promising commercial projects, graphene characterization method, graphene standardization, and local supports for graphene industry bases.

Important Dates:

  • Early Registration 12 July 2017
  • Poster Submission 15 August 2017

 

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Band-engineering in lead-free double perovskites

Article written by Dr Gregor Kieslich

Hybrid double perovskites have recently gained a vast amount of attention in the research area of photovoltaics as lead-free alternatives to the ground-breaking parent material [CH3NH3]PbI3.1 In double perovskites with the general formula A2B’B’’X6, two Pb2+ cations are effectively replaced with a monovalent B’ and a trivalent B’’ cation. Among the many fascinating properties of hybrid inorganic-organic perovskites, it is arguably the combination of strong light absorbance and long carrier lifetimes that make them so interesting for photovoltaic applications and light-emission devices. Recent experimental and theoretical studies on [CH3NH3]PbI3 revealed a direct-indirect character of the bandgap, i.e. [CH3NH3]PbI3 exhibits a direct band gap which is only approximately 47-60 meV higher in energy than the indirect band gap. Presumably, this is the origin of the paradox of strong absorption and long charge carrier lifetimes. When now turning our attention to lead free double perovskites, examples such as [CH3NH3]2KBiCl6 and [CH3NH3]2AgBiBr6 exhibit an indirect band gap,1 hence unfavourable light absorption properties. The symmetry mismatch that leads to the indirect band gap in such materials was recently studied by D. O. Scanlon and A. Zunger theoretically.2,3 Consequently, it is important to ask the question: is it possible to experimentally design a direct band gap in double perovskites?

In the recent article in Materials Horizons, ‘Designing Indirect-Direct Bandgap Transitions in Double Perovskites’,4 T. M. McQueen and co-workers have tackled this important question, studying the solid solution Cs2AgIn1-xSbxCl6 as a prototypical example. By wisely choosing B’ and B’’, a direct band gap in Cs2AgInCl6 has been achieved. The beauty lies in the simplicity of the concept – the understanding of band theory, i.e. symmetry and formation of bands with s-type and p-type character, see Figure 1. Going along the solid solution Cs2AgIn1-xSbxCl6, the valence band remains basically unchanged, whilst the character of the conduction band is continuously altered from s-type to p-type character. Clearly, the use of a chloride and in turn the ionic character of the solid with a band-gap larger than 3.5 eV limits the application of Cs2AgInCl6 in optoelectronics. However, the results depict a textbook example of how to manipulate properties in crystalline materials and open exciting opportunities for going forward in the field. For instance, one can easily envision a computational screening study of potential A2B’B’’X6 perovskites by using symmetry-based descriptors. Furthermore, it is important to note, that band engineering is a common concept in related areas of materials science, such as thermoelectrics and magnetic materials, and is a common tool for solid state chemists in general. Therefore, it is refreshing to see that band engineering now enters arguably one of the most fascinating developments of materials science within the last decade.

 

Figure 1. Schematic presentation of the orbital overlap (a) and the energy as a function of k for bands of s and p-σ orbitals (b) in a linear chain.

 

[1] F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D. Bristowe, A. K. Cheetham ‘The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskites (MA)2KBiCl6 (MA = methylammonium)Mater. Horiz. 2016, 3, 328.

[2] C. N. Savory, A. Walsh and D. O. Scanlon ‘Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?’ ACS Energy Lett. 2016, 1, 949.

[3] X.-G. Zhao, D. Yang, Y. Sun, T. Li, L. Zhang, L. Yu, A. Zunger ‘Cu-In Halide Perovskite Solar Absorbers’ J. Am. Chem. Soc. 2017, 139, 6718.

[4] T. Thao Tran, J. R. Panella, J. R. Chamorro, J. R. Morey, T. M. McQueen ‘Designing Indirect-Direct Bandgap Transitions in Double PerovskitesMater. Horiz. 2017, DOI: 10.1039/C7MH00239D.

 

Dr Gregor Kieslich is a Liebig-Fellow at Department of Chemistry, Technical University of Munich and is a member of the Community Board for Materials Horizons. He is an inorganic chemist focusing on crystal chemistry and structure–property relations in functional solids and hybrid frameworks: https://kieslichresearch.wordpress.com/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

1st European Conference on Chemistry of Two-Dimensional Materials (Chem2DMat)

Materials Horizons will be supporting the 1st European Conference on Chemistry of Two-Dimensional Materials (Chem2DMat), which will take place in Strasbourg on 22-26 August 2017. This conference aims at providing a forum to the rapidly growing community of scientists mastering the chemical approaches to 2D materials in order to fabricate systems and devices exhibiting tunable performance.

 

The conference will cover all areas related to 2D materials’ chemistry spanning their synthesis as well as their functionalization, using covalent and non-covalent approaches, for composites, foams and coatings, membranes, (bio-)sensing, (electro- and photo-)catalysis, energy conversion, harvesting and storage, electronics, nanomedicine, biomaterials, with sessions on the following themes:

  • Synthesis, processing and multiscale characterization
  • Bottom-up growth
  • Covalent and non-covalent functionalization
  • Synthetic two-dimensional materials
  • Design of 3D functional materials from layered systems

 

Some important deadlines:

  • Abstract submission (poster & talks) on 15 June
  • Early-bird registration ends 15 May

Visit the website for a full list of the speakers and to register your interest: http://bit.ly/chem2Dmat_reg

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A coating inspired by fish scales could highlight structural weakness in buildings and vehicles

Article written by Simon Neil

Inspired by natural iridescence in fish skin, scientists in Germany have developed a graphene-based coating that changes colour when deformed. It could provide a simple way to warn of hidden damage in buildings, bridges and other structures.

Many materials are coloured by chemical pigments, which absorb light at particular wavelengths and reflect the remaining light, which we see as colour. Other materials, however, are given colour by periodically arranged microscopic surface structures. These cause interference between reflected light waves, amplifying them at specific visible frequencies. This strategy is used in some of nature’s most vibrant materials, from fish scales to peacock feathers, butterfly wings and cephalopod skins.

To read the full article visit Chemistry World.

Variable structural colouration of composite interphases
Yinhu Deng, Shanglin Gao, Jianwen Liu, Uwe Gohs, Edith Mäder and Gert Heinrich
Journal Article Mater. Horiz., 2017, Advance Article
DOI: 10.1039/C6MH00559D, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

#RSCPoster Twitter Poster Conference 2017

Congratulations to Paolo Actis from the University of Leeds on winning Second prize in the #RSCMat category of the #RSCPoster Twitter Poster Conference 2017.

Paolo’s poster was titled was Creative use of electrowetting to perform biopsies from living cells

We are delighted to award Paolo the prize of a £50 RSC book voucher on behalf of Materials Horizons.

Thank you for participating in the Twitter conference and congratulations again on your achievement!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Materials Horizons in 2016

Following the success of Peer Review Week in September 2016 (dedicated to reviewer recognition) during which we published a list of our top reviewers, we are delighted to announce that we will continue to recognise the contribution that our reviewers make to the journal by announcing our Outstanding Reviewers each year.

We would like to highlight the Outstanding Reviewers for Materials Horizons in 2016, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Professor Fei Huang, South China University of Technology
Dr Susan Kelleher, University College Dublin
Professor Christine Luscombe, University of Washington
Professor Markus Niederberger, ETH Zurich
Dr Genqiang Zhang, University of Science and Technology of China

We would also like to thank the Materials Horizons board and the materials community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé. You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Spider silk strength is in the loop

Article written by Simon Neil

Discovery of hidden thread in silk of deadly spider inspires material-toughening strategy

Scientists have discovered microscopic metastructures in the web of the recluse spider that offer a blueprint for tough new materials.

Source: © Schniepp Lab The recluse spider spins its ribbon-like silk into loops

At first glance, the venomous yet timid Chilean recluse spider (Loxosceles laeta) seems to be highly disorganised in constructing its web. Traversing its lair, it deposits clumpy bales of silk in a messy, tangled cobweb. Look closer. Work led by Hannes Schniepp at the College of William and Mary, in Virginia, US, in collaboration with Fritz Vollrath at the University of Oxford, UK, has shown that the spider carefully choreographs its spinnerets to sew silk in thousands of micrometre-sized loops. When strained, the loops sequentially open to reveal hidden length in the thread, dissipating energy and staving off breakage.

To read the full article visit Chemistry World.

Toughness-enhancing metastructure in the recluse spider’s looped ribbon silk
S. R. Koebley, F. Vollrath and H. C. Schniepp
Journal Article Mater. Horiz., 2017, Advance Article
DOI: 10.1039/C6MH00473C, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)