Archive for the ‘News’ Category

Lectureship presented to Sangeeta Bhatia

Congratulations to Dr. Sangeeta N. Bhatia, winner of  the 2014 Corning Inc./Lab on a Chip Pioneers of Miniaturisation Lectureship.


The picture shows Lab on a Chip Executive Editor, Harpal Minhas (Left) and Director of Polymer processing in Organic & Biochemical Technologies, Science & Technology at Corning Incorporated, Ed Fewkes (right) presenting Sangeeta (middle) with her award earlier this week at the µTAS 2014 Conference.

The 9th ‘Pioneers of Ministurisation‘ Lectureship, is for extraordinary or outstanding contributions to the understanding or development of miniaturised systems and was presented to Dr Bhatia at the µTAS 2014 Conference in San Antonio, Texas in October 2014. Dr Bhatia received a certificate, $5000 and gave a short lecture at the conference. Further information, including past winners, can be viewed on our homepage.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A chemical time capsule

Inspired by tree rings, scientists have designed a sensing device that records chemical information over time as spatial patterns.

The transformation of time-varying signals into spatially-varying signals is fundamental for recording temporal information. For trees, growth rings that form throughout their lifetime provide a historical record of their growth conditions. Now, a team led by Sindy Tang at Stanford University, US, have designed a time capsule to record information about the occurrence of chemical events.

To read the fill article please visit Chemistry World.

Time capsule: an autonomous sensor and recorder based on diffusion–reaction
Lukas C. Gerber, Liat Rosenfeld, Yunhan Chen and Sindy K. Y. Tang  
Lab Chip, 2014, Advance Article
DOI: 10.1039/C4LC00640B, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip’s Top 2013 Cited Papers

In order to celebrate our new Impact Factor of 5.75, the following highly cited articles are free to access until 30th September 2014. Click on the links to download!

Graphical abstract: Commercialization of microfluidic point-of-care diagnostic devicesCommercialization of microfluidic point-of-care diagnostic devices
Curtis D. Chin, Vincent Linder and Samuel K. Sia
Lab Chip, 2012,12, 2118-2134
DOI: 10.1039/C2LC21204H, Critical Review
From themed collection Focus on USA

Microengineered physiological biomimicry: Organs-on-Chips
Dongeun Huh, Yu-suke Torisawa, Geraldine A. Hamilton, Hyun Jung Kim and Donald E. Ingber
Lab Chip, 2012,12, 2156-2164
DOI: 10.1039/C2LC40089H, Frontier

Droplet microfluidics for high-throughput biological assays
Mira T. Guo, Assaf Rotem, John A. Heyman and David A. Weitz
Lab Chip, 2012,12, 2146-2155
DOI: 10.1039/C2LC21147E, Critical Review

Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
Hyun Jung Kim, Dongeun Huh, Geraldine Hamilton and Donald E. Ingber
Lab Chip, 2012,12, 2165-2174
DOI: 10.1039/C2LC40074J, Paper

Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip
Anna Grosberg, Patrick W. Alford, Megan L. McCain and Kevin Kit Parker
Lab Chip, 2011,11, 4165-4173
DOI: 10.1039/C1LC20557A, Paper

Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation
Ali Asgar S. Bhagat, Han Wei Hou, Leon D. Li, Chwee Teck Lim and Jongyoon Han
Lab Chip2011,11, 1870-1878
DOI: 10.1039/C0LC00633E, Paper

Deformability-based cell classification and enrichment using inertial microfluidics
Soojung Claire Hur, Nicole K. Henderson-MacLennan, Edward R. B. McCabe and Dino Di Carlo
Lab Chip, 2011,11, 912-920
DOI: 10.1039/C0LC00595A, Paper

Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering
Bong Geun Chung, Kwang-Ho Lee, Ali Khademhosseini and Sang-Hoon Lee
Lab Chip, 2012,12, 45-59
DOI: 10.1039/C1LC20859D, Critical Review

Automated cellular sample preparation using a Centrifuge-on-a-Chip
Albert J. Mach, Jae Hyun Kim, Armin Arshi, Soojung Claire Hur and Dino Di Carlo
Lab Chip, 2011,11, 2827-2834
DOI: 10.1039/C1LC20330D, Paper

Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments
Sebastian Dochow, Christoph Krafft, Ute Neugebauer, Thomas Bocklitz, Thomas Henkel, Günter Mayer, Jens Albert and Jürgen Popp
Lab Chip, 2011,11, 1484-1490
DOI: 10.1039/C0LC00612B, Paper

*Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2014 Pioneers of Miniaturisation Lectureship Winner

Dr. Sangeeta N. Bhatia is winner of  the 2014 Corning Inc./Lab on a Chip Pioneers of Miniaturisation Lectureship

The 9th ‘Pioneers of Ministurisation‘ Lectureship, is for extraordinary or outstanding contributions to the understanding or development of miniaturised systems and will be presented to Dr Bhatia at the µTAS 2014 Conference in San Antonio, Texas in October. Dr Bhatia will receive a certificate, $5000 and will give a short lecture at the µTAS Conference, later this year.

About the winner

Dr Bhatia conducts research at the intersection of engineering, medicine, and biology to develop novel platforms for understanding, diagnosing, and treating human disease. Her ‘tiny technologies’ interface living cells with synthetic systems, enabling new applications in tissue regeneration, stem cell differentiation, medical diagnostics and drug delivery. She and her colleagues were the first to demonstrate that microfabrication technologies used in semiconductor manufacturing could be used to organize cells of different types to produce a tissue with emergent properties. Dr. Bhatia’s findings have produced high-throughput-capable human microlivers, which model human drug metabolism, drug-induced liver disease, and interaction with human pathogens. Her group also develops nanoparticles and nanoporous materials that can be designed to assemble and communicate to diagnose and treat a variety of diseases, including cancer.

Dr. Bhatia co-authored the first undergraduate textbook on tissue engineering and has published more than 150 manuscripts, that have been cited over 13,500 times. She and her 150+ trainees have contributed to more than 40 issued or pending patents and launched 9 biotechnology companies with close to 100 products. She is a frequent advisor to governmental organizations and consults widely for academia and industry.

Dr. Bhatia holds a B.S. from Brown University; an M.S. in mechanical engineering from MIT; a Ph.D. in biomedical engineering from MIT; and an M.D. from Harvard Medical School and currently she directs the Laboratory for Multiscale Regenerative Technologies at MIT. She is a Howard Hughes Medical Institute Investigator and the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT. She is a member of the Institute for Medical Engineering and Science and the Koch Institute for Integrative Cancer Research at MIT, a senior member of the Broad Institute, and a biomedical engineer at Brigham & Women’s Hospital. Dr. Bhatia is an elected Fellow of the Massachusetts Academy of Sciences, Biomedical Engineering Society, American Institute for Medical and Biological Engineering, and the American Society for Clinical Investigation.

We would like to congratulate Dr Bhatia on this achievement!

The 2013 Pioneers of Miniaturisation Lectureship was awarded to Shuichi Takayama, University of Michigan.

See here for further information, including past winners.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Increase in Lab on a Chip Impact Factor

Lab on a Chip Issue 17

We are delighted to announce that our 2013 Impact Factor* has risen to 5.748!

Lab on  a Chip provides a unique forum for the publication of significant and original work related to miniaturisation (on or off chips) at the micro- and nano- scale across a variety of disciplines. We would like to thank all of our Board members, authors, readers and reviewers for their continued support.

Contribute to our next Impact Factor –  submit your latest piece of high impact work with us here.

Interested in other Royal Society of Chemistry journals? Click here to see how well they did.

*The Impact Factor provides an indication of the average number of citations per paper. Produced annually, Impact Factors are calculated by dividing the number of citations in a year by the number of citeable articles published in the preceding two years. Data based on 2013 Journal Citation Reports®, (Thomson Reuters, 2014).

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

200th Issue of Lab on a Chip

We are delighted to announce the publication of our 200th issue of Lab on a Chip- how we have grown!

Launched in 2001, publishing 2 issues with a total of 31 articles that year, LOC is now publishing 24 issues a year. Many of the young researchers that published in the first issue have now become Professors themselves, and many have gone on to become award winners. Read the full editorial by our Editor, Harp Minhas to find out more!

This picture shows how the image of LOC has developed from the original cover to the LOC we are familiar with today.

To celebrate this achievement, we have made all of the HOT articles in the 200th issue of LOC free* to access throughout August. Click on the links below to download.

Ana I. Barbosa, Ana P. Castanheira, Alexander D. Edwards and Nuno M. Reis
Lab Chip, 2014, 14, 2918-2928
DOI: 10.1039/C4LC00464G
Yu-Chih Chen, Yu-Heng Cheng, Hong Sun Kim, Patrick N. Ingram, Jacques E. Nor and Euisik Yoon
Lab Chip, 2014, 14, 2941-2947
DOI: 10.1039/C4LC00391H

Lab on a Chip itself has had an enormous influence on the development of the field, by setting very high scientific standards, by providing a common forum and vocabulary, by highlighting significant results, and by attracting some of the best scientists. The journal, and Harp Minhas as the spirit of the journal, have provided a coherence to Lab-on-a-chip science and technology that have had enormous influence in channeling the direction of the field”

Professor George Whitesides, Chair of Editorial Board, Lab on a Chip

*Access is free through a registered RSC account until 31st August 2014 – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Organ–organ interactions could compound nanoparticle damage

A microfluidic device that recreates interactions between the gastrointestinal (GI) tract and the liver to give a more realistic assessment of nanoparticle toxicity has detected liver tissue injury at lower nanoparticle concentrations than expected following experiments with liver tissue only.

Many studies look at the beneficial medical effects of nanoparticles, however, Mandy Esch explains that her work in Michael Shuler’s lab at Cornell University is checking for adverse effects.

To read the full article, please visit Chemistry World.

Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury
Mandy B. Esch, Gretchen J. Mahler, Tracy Stokol and Michael L. Shuler
Lab Chip, 2014, Advance Article
DOI: 10.1039/C4LC00371C, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The winning challenge is antibiotics!

Antibiotic Resistance

http://www.longitudeprize.org/

Over the past month, members of the public have been voting for six  challenges to win the Longitude Prize and last week it was announced that antibiotics was the winning category.

The development of antibiotics has been vital to our survival, adding 20 years to each persons life on average – but antimicrobial resistance is threatening to cause antibiotics to become ineffective in the future. Along with the development of new antibiotics, diagnostics are crucial in ensuring that patients receive appropriate treatment; to help us to monitor infection and to conserve the therapies we have by only administrating to those that really need them.

The challenge for Longitude Prize 2014 will be set to create a cheap, accurate, rapid and easy-to-use point of care test kit to identify bacterial infections.

We are working with a number of learned societies to develop community initiatives to bring researchers from different disciplines together to stimulate research in the infections disease area. Supporting the Longitude Prize challenge, we have made the following relevant Lab on a Chip articles free* to access for a limited time, so click on the links below and download them today!

Time Lapse Investigation of Antibiotic Susceptibility using a Microfluidic Linear Gradient 3D Culture Device
Zining Hou,   Yu An,   Karin Hjort,   Klas Hjort,  Linus Sandegren and   Zhigang WU
Lab Chip, 2014, Accepted Manuscript
DOI: 10.1039/C4LC00451E

Antimicrobial susceptibility assays in paper-based portable culture devices
Frédérique Deiss, Maribel E. Funes-Huacca, Jasmin Bal, Katrina F. Tjhung and   Ratmir Derda

Lab Chip, 2014,14, 167-171
DOI: 10.1039/C3LC50887K


* Access is free through a registered RSC account – click here to register
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

DVD diagnostics

A pregnancy test based on standard DVD technology has the potential to be turned into a diagnostic platform that screens for abnormal pregnancies or even testicular cancer.

The DVD assay design and signal reading principle

We all hate waiting for tests results, especially when it comes to medical tests where the uncertainty of not knowing what’s wrong can be a real worry. As a result, the development of diagnostic tests that can be performed wherever the patient is, whether that is at home, in a doctor’s surgery or in a medical centre in the developing world, obtaining almost instantaneous results is a current hot topic. Over the past few years, a wide range of point-of-care diagnostic platforms have been developed and the field holds tremendous potential, perhaps one day eliminating the need for laboratory-based diagnostic tests altogether.

To read the full article please visit Chemistry World.

DVD technology-based molecular diagnosis platform: quantitative pregnancy test on a disc
Xiaochun Li, Samuel Weng, Bixia Ge, Zhihui Yao and Hua-Zhong Yu  
Lab Chip, 2014, Advance Article
DOI: 10.1039/C3LC51411K, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dicty World Race 2014 – which cells will make it to the finish line first?

What?

The Dicty World Race is a cell engineering challenge – competitors must apply their knowledge of chemotaxis to engineer the ultimate chemotaxing cell line. The test is between Dictyostelium, HL60 cells and human neutrophils.

Cells will navigate a complex microfluidic maze to reach a pool of chemoattractant at the finish line. As the race goes on, chemoattractant will diffuse through the microfluidic device, creating a spatial gradient to guide cells along the shortest path.

When?

The date for the 2014 Dicty Race is set for Friday May 16

Why?

To show off your molecular skills!

If you need more encouragement to take part, the winning team will win $5,000 and 15 minutes of fame at the Annual Dicty Conference.

More info?

Visit the website for more details: https://sites.google.com/site/dictyworldrace2014/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)