Archive for the ‘News’ Category

Lab on a Chip will not be accepting new Technical Innovations from 1st December 2016

We would like to inform our authors and readers that as a result of the recent change in the journal scope, the Editorial Board has decided that the journal will not accept Technical Innovations for submission from the 1st December 2016 onwards. All Technical Innovations currently under review for the journal will not be affected.

Technical Innovations currently published in the journal cover new and innovative technologies of immediate value to the Lab-on-a-Chip, micro/nanofluidics or miniaturisation communities or offer novel technical insights to new and/or existing problems.

The revised scope highlights that the journal aims to publish work at the interface between physical technological advancements and high impact applications that are of direct interest to a broad audience. The most important criterion used to assess manuscripts that are submitted to Lab on a Chip is novelty. Papers should demonstrate novelty in both: (i) the device physics, engineering, and materials; and (ii) applications in biology, chemistry, medicine. Submissions that describe novelty in both device and application are most likely to be published.

Outstanding articles featuring novelty in either the device or the application may also be published and therefore articles with outstanding innovation in the device technology may still be submitted to the journal, either as Full Papers or Communications.

For presubmission enquries, please contact the Editorial Office.

Submit your latest research here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Major society chemistry publishers jointly commit to integration with ORCID

ORCID provides an identifier for individuals to use with their name as they engage in research, scholarship and innovation activities, ensuring authors gain full credit for their work.

Today, we signed their open letter, along with ACS Publications, committing to unambiguous identification of all authors that publish in our journals.

image block
The Royal Society of Chemistry and the Publications Division of the American Chemical Society (ACS) today each became signatories to the ORCID Open Letter, reasserting the commitment of both organizations to enhancing the scholarly publishing experience for researchers worldwide who are involved in chemistry and allied fields.

The commitment by these two global chemistry publishers to undertake new workflow integration with technology infrastructure provided by ORCID, a not-for-profit organization that provides unique identifiers for researchers and scholars, will enable both societies to provide unambiguous designation of author names within chemistry and across the broader sciences. This partnership with ORCID will resolve ambiguity in researcher identification caused by name changes, cultural differences in name presentation, and the inconsistent use of name abbreviations that is too often a source of confusion for those who must rely on the published scientific record.

By becoming signatories to the ORCID Open Letter, these two major chemical societies are voicing their intent to collect ORCID iDs for all submitting authors through use of the ORCID API, and to display such identifiers in the articles published in their respective society journals. The integration of such activities within the publishers’ workflows means authors will benefit from automated linkages between their ORCID record and unique identifiers embedded within their published research articles, ensuring their contributions are appropriately recognized and credited.

During the publishing process, ACS and the Royal Society of Chemistry will automatically deposit publications to Crossref, which in turn will coordinate with ORCID to link and update the publishing activity populated to authors’ respective ORCID profiles, thus attributing each published work to the correct researcher. Existing holders of an ORCID iD will encounter a one-time prompt to grant permission for the linkage. If authors do not have an ORCID iD, they can easily enroll without navigating away from the publishers’ manuscript submission site. If users wish to revoke integrated ORCID profile access at any time, they can elect to do so through their ACS, Royal Society of Chemistry or ORCID accounts.

Both ACS Publications and the Royal Society of Chemistry understand the importance of attributing accurately the scholarly contributions of research scientists in the context of their other professional activities. “ACS has supported ORCID since the outset of the initiative,” says Sarah Tegen, Ph.D., Vice President of Global Editorial & Author Services at ACS Publications. “We are pleased now to align with the Royal Society of Chemistry in this endeavor, as both societies underscore our willingness not only to encourage and assist our respective authors in establishing their unique ORCID profiles, but also to help tackle the broader challenge of researcher name disambiguation in the scholarly literature. With the integration of author ORCID iDs in our publishing workflows, we will ensure that researchers receive proper credit for their accomplishments.”

Emma Wilson, Ph.D., Director of Publishing at the Royal Society of Chemistry adds, “We have been a supporter of ORCID since 2013, recognizing the benefits it brings to researchers; ORCID can and will make a huge difference to our authors’ ability to gain full credit for their work. ORCID will also help researchers meet the requirements of their research funders — for example, a number of funders have already announced that all grant applicants must now include a researcher’s ORCID iD. A unified system that integrates and links research-related information with accurate and timely linkage to the publishing output of authors has the potential to simplify and speed up their grant applications — something we know is important to researchers.”

“The ACS and the Royal Society of Chemistry have been long-standing supporters of ORCID,” says Laurel Haak, Ph.D., Executive Director, ORCID. “We are pleased to see ORCID integration into ACS and Royal Society of Chemistry Publications systems. This will be a substantial benefit to researchers in the chemistry community, both in improving search and discovery of research articles, and for attribution and recognition of researchers’ contributions to the discipline.”

About the American Chemical Society and ACS Publications

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

ACS Publications, a division of the American Chemical Society, is a nonprofit scholarly publisher of 50 peer-reviewed journals and a range of eBooks at the interface of chemistry and allied sciences, including physics and biology. ACS Publications journals are among the most-cited, most-trusted and most-read within the scientific literature. Respected for their editorial rigor, ACS journals offer high-quality service to authors and readers, including rapid time to publication, a range of channels for researchers to access ACS Publications’ award-winning web and mobile delivery platforms, and a comprehensive program of open access publishing options for authors and their funders. ACS Publications also publishes Chemical & Engineering News — the Society’s newsmagazine covering science and technology, business and industry, government and policy, education and employment aspects of the chemistry field.

About the Royal Society of Chemistry

The Royal Society of Chemistry is the world’s leading chemistry community, advancing excellence in the chemical sciences. With over 50,000 members and a knowledge business that spans the globe, we are the U.K.’s professional body for chemical scientists; a not-for-profit organisation with 175 years of history and an international vision for the future. We promote, support and celebrate chemistry. We work to shape the future of the chemical sciences — for the benefit of science and humanity.

About ORCID

ORCID’s vision is a world where all who participate in research, scholarship and innovation are uniquely identified and connected to their contributions across disciplines, borders and time. ORCID provides an identifier for individuals to use with their name as they engage in research, scholarship and innovation activities. It provides open tools that enable transparent and trustworthy connections between researchers, their contributions and affiliations. The organization provides this service to help people find information and to simplify reporting and analysis. ORCID is a not-for-profit organization, sustained by fees from member organizations. Its work is open, transparent and non-proprietary. The organization strives to be a trusted component of research infrastructure with the goal of providing clarity in the breadth of research contributions and the people who make them.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Google Glass to monitor plant health

‘Okay Glass, image a leaf’

Scientists in the US have developed their very own pair of rose-tinted spectacles by adapting Google Glass to measure the chlorophyll concentration of leaves.

Aydogan Ozcan and his research group at the University of California are passionate about creating new technologies through innovative, photonic methods and are well acquainted with the possibilities of wearable technology in scientific research. Chlorophyll concentration is a handy metric for monitoring plant health and the system devised by Ozcan’s team combines Google Glass with a custom made leaf holder and bespoke software to determine just that.

To read the full article visit Chemistry World.

Quantification of plant chlorophyll content using Google Glass
Bingen Cortazar, Hatice Ceylan Koydemir, Derek Tseng, Steve Feng and Aydogan Ozcan  
Lab Chip, 2015, Advance Article
DOI: 10.1039/C4LC01279H, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Silver lining for paper Ebola test

Ebola, yellow fever and dengue can be tested for in one go

Researchers in the US have developed a silver nanoparticle-based paper test to simultaneously detect dengue, yellow fever and Ebola. This could provide a cheap and reliable diagnosis for all three diseases, that’s as quick as a home pregnancy test.

The Ebola epidemic in West Africa underscores an urgent need for rapid diagnostics; quick identification and patient isolation can benefit the sick and the healthy. However, dengue, yellow fever and Ebola all initially manifest as a fever and headache, so are easily mixed up.

To read the full article please visit Chemistry World.

Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses
Chun-Wan Yen, Helena de Puig, Justina O. Tam, José Gómez-Márquez, Irene Bosch, Kimberly Hamad-Schifferli and Lee Gehrke  
Lab Chip, 2015, Advance Article
DOI: 10.1039/C5LC00055F, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing Editorial Board Member Xudong Fan

We are delighted to welcome Xudong (Sherman) Fan to the Lab on a Chip Editorial Board.

Dr Fan is currently a Professor in the Department of Biomedical Engineering at the University of Michigan.

Having completed his B.S and M.S at Peking University, Xudong moved to the USA to complete his PhD at the University of Oregon in the Oregon Center for Optics. From 2000 to 2004, Xudong worked at Research Corporate Lab at 3M Company. In 2004 he took up a position as an Assistant Professor at the University of Missouri where he became a member of Christopher S. Bond Life Sciences Center and the International Center for Nano/Micro Systems and Nanotechnology. In 2010 Xudong moved to the University of Michigan where he is currently a Professor of Biomedical Engineering, a member of Michigan Center for Integrative Research in Critical Care and Wireless Integrated Microsensing and Systems.

My Research Goal:
“My research goal is to use the state-of-the-art photonics, nanotechnology, microfluidics, and other engineering tools to detect and analyse bio/chemical species in both liquid and gas phases.”
Professor Xudong (Sherman) Fan, Lab on a Chip Editorial Board Member

Research in The Fan Lab focuses on the development of novel bio/chemical sensor platforms for analytes in either liquid or gas phase using optofluidic technology and multi-dimensional micro-gas chromatography technology. The groups most recent publication in Lab on a Chip ‘Optofluidic lasers with a single molecular layer of gain’ was added to our Lab on a Chip 2014 HOT Articles collection as it received particularly high scores during peer review.

Last year Xudong received a Departmental Award for Outstanding Accomplishment and become a fellow of Optical Society of America. Congratulations Xudong!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chip-on-a-cell

Scientists in Spain have flipped the cell-on-a-chip concept to bring us a chip-on-a-cell

Field emission scanning electron microscopy images of a barcode attached to the zona pellucida of a mouse embryo

Jose Antonio Plaza of the Institute of Microelectronics Barcelona and colleagues affixed polysilicon chips, which act as barcodes, onto the outer surface of the zona pellucida, a membrane that surrounds immature egg cells and embryos. Although silicon nanowires penetrated the membrane to attach the chip, they did not interfere with embryo development in tests on mouse embryos.

To read the full article visit Chemistry World.

Silicon-nanowire based attachment of silicon chips for mouse embryo labelling
S. Durán, S. Novo, M. Duch, R. Gómez-Martínez, M. Fernández-Regúlez, A. San Paulo, C. Nogués, J. Esteve, E. Ibañez and J. A. Plaza  
Lab Chip, 2015, Advance Article
DOI: 10.1039/C4LC01299B, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lectureship presented to Sangeeta Bhatia

Congratulations to Dr. Sangeeta N. Bhatia, winner of  the 2014 Corning Inc./Lab on a Chip Pioneers of Miniaturisation Lectureship.


The picture shows Lab on a Chip Executive Editor, Harpal Minhas (Left) and Director of Polymer processing in Organic & Biochemical Technologies, Science & Technology at Corning Incorporated, Ed Fewkes (right) presenting Sangeeta (middle) with her award earlier this week at the µTAS 2014 Conference.

The 9th ‘Pioneers of Ministurisation‘ Lectureship, is for extraordinary or outstanding contributions to the understanding or development of miniaturised systems and was presented to Dr Bhatia at the µTAS 2014 Conference in San Antonio, Texas in October 2014. Dr Bhatia received a certificate, $5000 and gave a short lecture at the conference. Further information, including past winners, can be viewed on our homepage.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A chemical time capsule

Inspired by tree rings, scientists have designed a sensing device that records chemical information over time as spatial patterns.

The transformation of time-varying signals into spatially-varying signals is fundamental for recording temporal information. For trees, growth rings that form throughout their lifetime provide a historical record of their growth conditions. Now, a team led by Sindy Tang at Stanford University, US, have designed a time capsule to record information about the occurrence of chemical events.

To read the fill article please visit Chemistry World.

Time capsule: an autonomous sensor and recorder based on diffusion–reaction
Lukas C. Gerber, Liat Rosenfeld, Yunhan Chen and Sindy K. Y. Tang  
Lab Chip, 2014, Advance Article
DOI: 10.1039/C4LC00640B, Communication

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip’s Top 2013 Cited Papers

In order to celebrate our new Impact Factor of 5.75, the following highly cited articles are free to access until 30th September 2014. Click on the links to download!

Graphical abstract: Commercialization of microfluidic point-of-care diagnostic devicesCommercialization of microfluidic point-of-care diagnostic devices
Curtis D. Chin, Vincent Linder and Samuel K. Sia
Lab Chip, 2012,12, 2118-2134
DOI: 10.1039/C2LC21204H, Critical Review
From themed collection Focus on USA

Microengineered physiological biomimicry: Organs-on-Chips
Dongeun Huh, Yu-suke Torisawa, Geraldine A. Hamilton, Hyun Jung Kim and Donald E. Ingber
Lab Chip, 2012,12, 2156-2164
DOI: 10.1039/C2LC40089H, Frontier

Droplet microfluidics for high-throughput biological assays
Mira T. Guo, Assaf Rotem, John A. Heyman and David A. Weitz
Lab Chip, 2012,12, 2146-2155
DOI: 10.1039/C2LC21147E, Critical Review

Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
Hyun Jung Kim, Dongeun Huh, Geraldine Hamilton and Donald E. Ingber
Lab Chip, 2012,12, 2165-2174
DOI: 10.1039/C2LC40074J, Paper

Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip
Anna Grosberg, Patrick W. Alford, Megan L. McCain and Kevin Kit Parker
Lab Chip, 2011,11, 4165-4173
DOI: 10.1039/C1LC20557A, Paper

Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation
Ali Asgar S. Bhagat, Han Wei Hou, Leon D. Li, Chwee Teck Lim and Jongyoon Han
Lab Chip2011,11, 1870-1878
DOI: 10.1039/C0LC00633E, Paper

Deformability-based cell classification and enrichment using inertial microfluidics
Soojung Claire Hur, Nicole K. Henderson-MacLennan, Edward R. B. McCabe and Dino Di Carlo
Lab Chip, 2011,11, 912-920
DOI: 10.1039/C0LC00595A, Paper

Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering
Bong Geun Chung, Kwang-Ho Lee, Ali Khademhosseini and Sang-Hoon Lee
Lab Chip, 2012,12, 45-59
DOI: 10.1039/C1LC20859D, Critical Review

Automated cellular sample preparation using a Centrifuge-on-a-Chip
Albert J. Mach, Jae Hyun Kim, Armin Arshi, Soojung Claire Hur and Dino Di Carlo
Lab Chip, 2011,11, 2827-2834
DOI: 10.1039/C1LC20330D, Paper

Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments
Sebastian Dochow, Christoph Krafft, Ute Neugebauer, Thomas Bocklitz, Thomas Henkel, Günter Mayer, Jens Albert and Jürgen Popp
Lab Chip, 2011,11, 1484-1490
DOI: 10.1039/C0LC00612B, Paper

*Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2014 Pioneers of Miniaturisation Lectureship Winner

Dr. Sangeeta N. Bhatia is winner of  the 2014 Corning Inc./Lab on a Chip Pioneers of Miniaturisation Lectureship

The 9th ‘Pioneers of Ministurisation‘ Lectureship, is for extraordinary or outstanding contributions to the understanding or development of miniaturised systems and will be presented to Dr Bhatia at the µTAS 2014 Conference in San Antonio, Texas in October. Dr Bhatia will receive a certificate, $5000 and will give a short lecture at the µTAS Conference, later this year.

About the winner

Dr Bhatia conducts research at the intersection of engineering, medicine, and biology to develop novel platforms for understanding, diagnosing, and treating human disease. Her ‘tiny technologies’ interface living cells with synthetic systems, enabling new applications in tissue regeneration, stem cell differentiation, medical diagnostics and drug delivery. She and her colleagues were the first to demonstrate that microfabrication technologies used in semiconductor manufacturing could be used to organize cells of different types to produce a tissue with emergent properties. Dr. Bhatia’s findings have produced high-throughput-capable human microlivers, which model human drug metabolism, drug-induced liver disease, and interaction with human pathogens. Her group also develops nanoparticles and nanoporous materials that can be designed to assemble and communicate to diagnose and treat a variety of diseases, including cancer.

Dr. Bhatia co-authored the first undergraduate textbook on tissue engineering and has published more than 150 manuscripts, that have been cited over 13,500 times. She and her 150+ trainees have contributed to more than 40 issued or pending patents and launched 9 biotechnology companies with close to 100 products. She is a frequent advisor to governmental organizations and consults widely for academia and industry.

Dr. Bhatia holds a B.S. from Brown University; an M.S. in mechanical engineering from MIT; a Ph.D. in biomedical engineering from MIT; and an M.D. from Harvard Medical School and currently she directs the Laboratory for Multiscale Regenerative Technologies at MIT. She is a Howard Hughes Medical Institute Investigator and the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT. She is a member of the Institute for Medical Engineering and Science and the Koch Institute for Integrative Cancer Research at MIT, a senior member of the Broad Institute, and a biomedical engineer at Brigham & Women’s Hospital. Dr. Bhatia is an elected Fellow of the Massachusetts Academy of Sciences, Biomedical Engineering Society, American Institute for Medical and Biological Engineering, and the American Society for Clinical Investigation.

We would like to congratulate Dr Bhatia on this achievement!

The 2013 Pioneers of Miniaturisation Lectureship was awarded to Shuichi Takayama, University of Michigan.

See here for further information, including past winners.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)